3,002 research outputs found

    The Gravitational Lens CFRS03.1077

    Get PDF
    An exquisite gravitational arc with a radius of 2.1" has been discovered around the z = 0.938 field elliptical galaxy CFRS03.1077 during HST observations of Canada-France Redshift Survey (CFRS) fields. Spectroscopic observations of the arc show that the redshift of the resolved lensed galaxy is z = 2.941. This gravitational lens-source system is well-fitted using the position angle and ellipticity derived from the visible matter distribution and an isothermal mass profile with a mass corresponding to sigma =387+-5 km/s. Surprisingly, given the evidence for passive evolution of elliptical galaxies, this is in good agreement with an estimate based on the fundamental plane for z = 0 ellipticals. This, perhaps, indicates that this galaxy has not shared in the significant evolution observed for average elliptical galaxies at z ~ 1. A second elliptical galaxy with similar luminosity from the CFRS survey, CFRS 14.1311 at z=0.807, is also a lens but in this case the lens model gives a much smaller mass-to-light ratio, i.e., it appears to confirm the expected evolution. This suggests that this pair of field elliptical galaxies may have very different evolutionary histories, a significant result if confirmed. Clearly, CFRS03.1077 demonstrates that these "Einstein rings" are powerful probes of high redshift galaxies.Comment: 11 pages, 5 figures, accepted by Ap.

    Reinventing College Physics for Biologists: Explicating an epistemological curriculum

    Full text link
    The University of Maryland Physics Education Research Group (UMd-PERG) carried out a five-year research project to rethink, observe, and reform introductory algebra-based (college) physics. This class is one of the Maryland Physics Department's large service courses, serving primarily life-science majors. After consultation with biologists, we re-focused the class on helping the students learn to think scientifically -- to build coherence, think in terms of mechanism, and to follow the implications of assumptions. We designed the course to tap into students' productive conceptual and epistemological resources, based on a theoretical framework from research on learning. The reformed class retains its traditional structure in terms of time and instructional personnel, but we modified existing best-practices curricular materials, including Peer Instruction, Interactive Lecture Demonstrations, and Tutorials. We provided class-controlled spaces for student collaboration, which allowed us to observe and record students learning directly. We also scanned all written homework and examinations, and we administered pre-post conceptual and epistemological surveys. The reformed class enhanced the strong gains on pre-post conceptual tests produced by the best-practices materials while obtaining unprecedented pre-post gains on epistemological surveys instead of the traditional losses.Comment: 35 pages including a 15 page appendix of supplementary material

    The Canada-UK Deep Sub-Millimeter Survey II: First identifications, redshifts and implications for galaxy evolution

    Full text link
    Identifications are sought for 12 sub-mm sources detected by Eales et al (1998). Six are securely identified, two have probable identifications and four remain unidentified with I_AB > 25. Spectroscopic and estimated photometric redshifts indicate that four of the sources have z < 1, and four have 1 < z < 3, with the remaining four empty field sources probably lying at z > 3. The spectral energy distributions of the identifications are consistent with those of high extinction starbursts such as Arp 220. The far-IR luminosities of the sources at z > 0.5 are of order 3 x 10^12 h_50^-2 L_sun, i.e. slightly larger than that of Arp 220. Based on this small sample, the cumulative bolometric luminosity function shows strong evolution to z ~ 1, but weaker or possibly even negative evolution beyond. The redshift dependence of the far-IR luminosity density does not appear, at this early stage, to be inconsistent with that seen in the ultraviolet luminosity density. Assuming that the energy source in the far-IR is massive stars, the total luminous output from star-formation in the Universe is probably dominated by the far-IR emission. The detected systems have individual star-formation rates (exceeding 300 h_50^-2 M_O yr^-1) that are much higher than seen in the ultraviolet selected samples, and which are sufficient to form substantial stellar populations on dynamical timescales of 10^8 yr. The association with merger-like morphologies and the obvious presence of dust makes it attractive to identify these systems as forming the metal-rich spheroid population, in which case we would infer that much of this activity has occurred relatively recently, at z ~ 2.Comment: 17 pages text + 14 figures. Accepted for publication in the Astrophysical Journal. Gzipped tar file contains one text.ps file for text and tables, one Fig2.jpg file for Fig 2, and 13 Fig*.ps files for the remaining figure

    Contribution of multidomain titanomagnetite to the intensity and stability of Mars crustal magnetic anomalies

    Get PDF
    Two basalts with compositions relevant to the crusts of Mars and Earth were synthesized at igneous temperatures and held at 650°C for 21 to 257 days under quartz‐fayalite‐magnetite fO2 buffer conditions. The run products are germane to slowly cooled igneous intrusions, which might be a significant volumetric fraction of the Martian crust and carriers of magnetic anomalies in the Southern Highlands. Both basalts acquired intense thermoremanent magnetizations and intense but easily demagnetized anhysteretic remanent magnetizations carried by homogeneous multidomain titanomagnetite. Hypothetical intrusions on Mars composed of these materials would be capable of acquiring intense remanences sufficient to generate the observed anomalies. However, the remanence would be easily demagnetized by impact events after the cessation of the Mars geodynamo. Coercivity enhancement by pressure or formation of single domain regions via exsolution within the multidomain grains is necessary for long‐term retention of a remanence carried exclusively by multidomain titanomagnetite grains

    Contribution of multidomain titanomagnetite to the intensity and stability of Mars crustal magnetic anomalies

    Get PDF
    Two basalts with compositions relevant to the crusts of Mars and Earth were synthesized at igneous temperatures and held at 650°C for 21 to 257 days under quartz-fayalite-magnetite ƒO2 buffer conditions. The run products are germane to slowly cooled igneous intrusions, which might be a significant volumetric fraction of the Martian crust and carriers of magnetic anomalies in the Southern Highlands. Both basalts acquired intense thermoremanent magnetizations and intense but easily demagnetized anhysteretic remanent magnetizations carried by homogeneous multidomain titanomagnetite. Hypothetical intrusions on Mars composed of these materials would be capable of acquiring intense remanences sufficient to generate the observed anomalies. However, the remanence would be easily demagnetized by impact events after the cessation of the Mars geodynamo. Coercivity enhancement by pressure or formation of single domain regions via exsolution within the multidomain grains is necessary for long-term retention of a remanence carried exclusively by multidomain titanomagnetite grains

    Caltech Faint Galaxy Redshift Survey X: A Redshift Survey in the Region of the Hubble Deep Field North

    Get PDF
    A redshift survey has been carried out in the region of the Hubble Deep Field North using the Low Resolution Imaging Spectrograph at the Keck Observatory. The resulting redshift catalog, which contains 671 entries, is a compendium of our own data together with published LRIS/Keck data. It is more than 92% complete for objects, irrespective of morphology, to R=24R = 24 mag in the HDF itself and to R=23R = 23 mag in the Flanking Fields within a diameter of 8 arcmin centered on the HDF, an unusually high completion for a magnitude limited survey performed with a large telescope. A median redshift z=1.0z = 1.0 is reached at R∌23.8R \sim 23.8. Strong peaks in the redshift distribution, which arise when a group or poor cluster of galaxies intersect the area surveyed, can be identified to z∌1.2z \sim 1.2 in this dataset. More than 68% of the galaxies are members of these redshift peaks. In a few cases, closely spaced peaks in zz can be resolved into separate groups of galaxies that can be distinguished in both velocity and location on the sky. The radial separation of these peaks in the pencil-beam survey is consistent with a characteristic length scale for the their separation of ≈\approx70 Mpc in our adopted cosmology (h=0.6,ΩM=0.3h = 0.6, \Omega_M = 0.3, Λ=0\Lambda = 0). Strong galaxy clustering is in evidence at all epochs back to z≀1.1z \le 1.1. (abstract abridged)Comment: Accepted to the ApJ. This version contains all the figures and tables. 2 minor typos in table 2b correcte

    The Canada-UK Deep Submillimetre Survey: First Submillimetre Images, the Source Counts, and Resolution of the Background

    Get PDF
    We present the first results of a deep unbiased submillimetre survey carried out at 450 and 850 microns. We detected 12 sources at 850 microns, giving a surface density of sources with 850-micron flux densities > 2.8mJy of of 0.49+-0.16 per square arcmin. The sources constitute 20-30% of the background radiation at 850 microns and thus a significant fraction of the entire background radiation produced by stars. This implies, through the connection between metallicity and background radiation, that a significant fraction of all the stars that have ever been formed were formed in objects like those detected here. The combination of their large contribution to the background radiation and their extreme bolometric luminosities make these objects excellent candidates for being proto-ellipticals. Optical astronomers have recently shown that the UV-luminosity density of the universe increases by a factor of about 10 between z=0 and z=1 and then decreases again at higher redshifts. Using the results of a parallel submillimetre survey of the local universe, we show that both the submillimetre source density and background can be explained if the submillimetre luminosity density evolves in a similar way to the UV-luminosity density. Thus, if these sources are ellipticals in the process of formation, they may be forming at relatively modest redshifts.Comment: 8 pages (LATEX), 6 postscript figures, submitted to ApJ Letter
    • 

    corecore