304 research outputs found

    Spectral estimation for spatial point patterns

    Full text link
    This article determines how to implement spatial spectral analysis of point processes (in two dimensions or more), by establishing the moments of raw spectral summaries of point processes. We establish the first moments of raw direct spectral estimates such as the discrete Fourier transform of a point pattern. These have a number of surprising features that departs from the properties of raw spectral estimates of random fields and time series. As for random fields, the special case of isotropic processes warrants special attention, which we discuss. For time series and random fields white noise plays a special role, mirrored by the Poisson processes in the case of the point process. For random fields bilinear estimators are prevalent in spectral analysis. We discuss how to smooth any bilinear spectral estimator for a point process. We also determine how to taper this bilinear spectral estimator, how to calculate the periodogram, sample the wavenumbers and discuss the correlation of the periodogram. In parts this corresponds to recommending suitable separable as well as isotropic tapers in d dimensions. This, in aggregation, establishes the foundations for spectral analysis of point processes.Comment: 29 pages + 23 pages of supplements, 6 figure

    The Escherichia coli MarA protein regulates the ycgZ-ymgABC operon to inhibit biofilm formation

    Get PDF
    The Escherichia coli marRAB operon is a paradigm for chromosomally encoded antibiotic resistance. The operon exerts its effect via an encoded transcription factor called MarA that modulates efflux pump and porin expression. In this work, we show that MarA is also a regulator of biofilm formation. Control is mediated by binding of MarA to the intergenic region upstream of the ycgZ-ymgABC operon. The operon, known to influence the formation of curli fibres and colanic acid, is usually expressed during periods of starvation. Hence, the ycgZ-ymgABC promoter is recognised by σ38 (RpoS)-associated RNA polymerase (RNAP). Surprisingly, MarA does not influence σ38 -dependent transcription. Instead, MarA drives transcription by the housekeeping σ70 -associated RNAP. The effects of MarA on ycgZ-ymgABC expression are coupled with biofilm formation by the rcsCDB phosphorelay system, with YcgZ, YmgA and YmgB forming a complex that directly interacts with the histidine kinase domain of RcsC

    The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony.

    No full text
    A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for > or =6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria

    Distinct conformations, aggregation and cellular internalization of different tau strains

    Get PDF
    The inter-cellular propagation of tau aggregates in several neurodegenerative diseases involves, in part, recurring cycles of extracellular tau uptake, initiation of endogenous tau aggregation, and extracellular release of at least part of this protein complex. However, human brain tau extracts from diverse tauopathies exhibit variant or “strain” specificity in inducing inter-cellular propagation in both cell and animal models. It is unclear if these distinctive properties are affected by disease-specific differences in aggregated tau conformation and structure. We have used a combined structural and cell biological approach to study if two frontotemporal dementia (FTD)-associated pathologic mutations, V337M and N279K, affect the aggregation, conformation and cellular internalization of the tau four-repeat domain (K18) fragment. In both heparin-induced and native-state aggregation experiments, each FTD variant formed soluble and fibrillar aggregates with remarkable morphological and immunological distinctions from the wild type (WT) aggregates. Exogenously-applied oligomers of the FTD tau-K18 variants (V337M and N279K) were significantly more efficiently taken up by SH-SY5Y neuroblastoma cells than WT tau-K18, suggesting mutation-induced changes in cellular internalization. However, shared internalization mechanisms were observed: endocytosed oligomers were distributed in the cytoplasm and nucleus of SH-SY5Y cells and the neurites and soma of human induced pluripotent stem cell-derived neurons where they co-localized with endogenous tau and the nuclear protein nucleolin. Altogether, evidence of conformational and aggregation differences between WT and disease-mutated tau K18 is demonstrated, which may explain their distinct cellular internalization potencies. These findings may account for critical aspects of the molecular pathogenesis of tauopathies involving WT and mutated tau

    In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells

    Get PDF
    The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies

    Urinary tract reconstruction: Applied urodynamics

    Full text link
    Sixty-four patients underwent urinary reconstruction guided by urodynamic investigation. Twenty-eight patients had myelodysplasia (MM) and 26 had spinal cord injuries (SCI). Operative outcomes were assessed by repetitive urodynamic testing. Bladder reservoir function and detrusor contractile activity were correctly assessed in all 64 patients. Operative creation of a more adequate reservoir was required in 58 patients. Assessment of urethral continence function was inaccurate in six instances wherein we judged urethral sphincter function adequate when, in fact, it was not. Ureteral function was judged radiographically or by furosimide renography, or Whitaker perfusion testing. In the two instances where ureteral function was in doubt, it made no difference in outcome. There was a striking resolution of ureteral radiographic abnormalities after reconstruction which we attribute to the low-pressure reservoir.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38471/1/1930090507_ftp.pd

    Visualizing the Wavenumber Content of a Point Pattern

    Get PDF
    Spatial point patterns are a commonly recorded form of data in ecology, medicine, astronomy, criminology, epidemiology and many other application fields. One way to understand their second order dependence structure is via their spectral density function. However, unlike time series analysis, for point patterns such approaches are currently underutilized. In part, this is because the interpretation of the spectral representation of the underlying point processes is challenging. In this letter, we demonstrate how to band-pass filter point patterns, thus enabling us to explore the spectral representation of point patterns in space by isolating the signal corresponding to certain sets of wavenumbers
    corecore