184 research outputs found

    What is General Relativity?

    Get PDF
    General relativity is a set of physical and geometric principles, which lead to a set of (Einstein) field equations that determine the gravitational field, and to the geodesic equations that describe light propagation and the motion of particles on the background. But open questions remain, including: What is the scale on which matter and geometry are dynamically coupled in the Einstein equations? Are the field equations valid on small and large scales? What is the largest scale on which matter can be coarse grained while following a geodesic of a solution to Einstein's equations? We address these questions. If the field equations are causal evolution equations, whose average on cosmological scales is not an exact solution of the Einstein equations, then some simplifying physical principle is required to explain the statistical homogeneity of the late epoch Universe. Such a principle may have its origin in the dynamical coupling between matter and geometry at the quantum level in the early Universe. This possibility is hinted at by diverse approaches to quantum gravity which find a dynamical reduction to two effective dimensions at high energies on one hand, and by cosmological observations which are beginning to strongly restrict the class of viable inflationary phenomenologies on the other. We suggest that the foundational principles of general relativity will play a central role in reformulating the theory of spacetime structure to meet the challenges of cosmology in the 21st century.Comment: 18 pages. Invited article for Physica Scripta Focus issue on 21st Century Frontiers. v2: Appendix amended, references added. v3: Small corrections, references added, matches published versio

    Observational Challenges for the Standard FLRW Model

    Get PDF
    We summarise some of the main observational challenges for the standard Friedmann-Lemaitre-Robertson-Walker cosmological model and describe how results recently presented in the parallel session `Large--scale Structure and Statistics' (DE3) at the `Fourteenth Marcel Grossman Meeting on General Relativity' are related to these challenges.Comment: 17 pages; references added. Matches published version in Int. J. Mod. Phys. D; Report on Parallel Session DE3 of MG1

    Kundt spacetimes as solutions of topologically massive gravity

    Full text link
    We obtain new solutions of topologically massive gravity. We find the general Kundt solutions, which in three dimensions are spacetimes admitting an expansion-free null geodesic congruence. The solutions are generically of algebraic type II, but special cases are types III, N or D. Those of type D are the known spacelike-squashed AdS_3 solutions, and of type N are the known AdS pp-waves or new solutions. Those of types II and III are the first known solutions of these algebraic types. We present explicitly the Kundt solutions that are CSI spacetimes, for which all scalar polynomial curvature invariants are constant, whereas for the general case we reduce the field equations to a series of ordinary differential equations. The CSI solutions of types II and III are deformations of spacelike-squashed AdS_3 and the round AdS_3, respectively.Comment: 30 pages. This material has come from splitting v1 of arXiv:0906.3559 into 2 separate papers. v2: minor changes

    Generalized Teleparallel de Sitter geometries

    Full text link
    Theories of gravity based on teleparallel geometries are characterized by the torsion, which is a function of the coframe, derivatives of the coframe, and a zero curvature and metric compatible spin connection. The appropriate notion of a symmetry in a teleparallel geometry is that of an affine symmetry. Due to the importance of the de Sitter geometry and Einstein spaces within general relativity, we shall describe teleparallel de Sitter geometries and discuss their possible generalizations. In particular, we shall analyse a class of Einstein teleparallel geometries which have a 4-dimensional Lie algebra of affine symmetries, and display two one-parameter families of explicit exact solutions.Comment: 25 pages, no figure, Submitted to EPJ

    Food miles: time for a re-think?

    Get PDF
    PurposeThe purpose of this paper is to test the efficacy of the concept of food miles that has proved so popular with the public as a means of assessing the sustainability of produce.Design/methodology/approachThis paper uses data from a UK major food importer and retailer to correlate carbon emissions from transport, and transport‐related storage, with food miles by creating farm‐specific mode‐weighted emission factors.FindingsThe correlation is found to be poor for a wide range of products and locations and it is clear that the mode of transport is as important as the distance, with sourcing from parts of the Mediterranean resulting in emissions greater than those from the Americas.Practical implicationsIt is concluded that it is difficult to justify the use of food miles when attempting to influence purchasing behaviour. Because of this result, processes and tools have been developed that relay information on true transport‐related carbon emissions to customers and bulk purchasers that allow them to make informed decisions.Originality/valueThis paper questions the value of using the concept of food miles as a driving force for changing purchasing behaviour by either the customer or the purchasing department of a retailer.</jats:sec

    The reliability of inverse modelling for the wide scale characterization of the thermal properties of buildings

    Get PDF
    The reduction of energy use in buildings is a major component of greenhouse gas mitigation policy and requires knowledge of the fabric and the occupant behaviour. Hence there has been a longstanding desire to use automatic means to identify these. Smart metres and the internet-of-things have the potential to do this. This paper describes a study where the ability of inverse modelling to identify building parameters is evaluated for 6 monitored real and 1000 simulated buildings. It was found that low-order models provide good estimates of heat transfer coefficients and internal temperatures if heating, electricity use and CO2 concentration are measured during the winter period. This implies that the method could be used with a small number of cheap sensors and enable the accurate assessment of buildings’ thermal properties, and therefore the impact of any suggested retrofit. This has the potential to be transformative for the energy efficiency industry.</p

    Cosmology with positive and negative exponential potentials

    Get PDF
    We present a phase-plane analysis of cosmologies containing a scalar field ϕ\phi with an exponential potential Vexp(λκϕ)V \propto \exp(-\lambda \kappa \phi) where κ2=8πG\kappa^2 = 8\pi G and VV may be positive or negative. We show that power-law kinetic-potential scaling solutions only exist for sufficiently flat (λ26\lambda^26) negative potentials. The latter correspond to a class of ever-expanding cosmologies with negative potential. However we show that these expanding solutions with a negative potential are to unstable in the presence of ordinary matter, spatial curvature or anisotropic shear, and generic solutions always recollapse to a singularity. Power-law kinetic-potential scaling solutions are the late-time attractor in a collapsing universe for steep negative potentials (the ekpyrotic scenario) and stable against matter, curvature or shear perturbations. Otherwise kinetic-dominated solutions are the attractor during collapse (the pre big bang scenario) and are only marginally stable with respect to anisotropic shear.Comment: 8 pages, latex with revtex, 9 figure
    corecore