62 research outputs found

    Numerical solution of the Boltzmann equation for the collective modes of trapped Fermi gases

    Full text link
    We numerically solve the Boltzmann equation for trapped fermions in the normal phase using the test-particle method. After discussing a couple of tests in order to estimate the reliability of the method, we apply it to the description of collective modes in a spherical harmonic trap. The numerical results are compared with those obtained previously by taking moments of the Boltzmann equation. We find that the general shape of the response function is very similar in both methods, but the relaxation time obtained from the simulation is significantly longer than that predicted by the method of moments. It is shown that the result of the method of moments can be corrected by including fourth-order moments in addition to the usual second-order ones and that this method agrees very well with our numerical simulations.Comment: 13 pages, 8 figures, accepted for publication in Phys. Rev.

    Nuclear energy density optimization: Shell structure

    Full text link
    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.Comment: 18 pages, 13 figures, 12 tables; resubmitted for publication to Phys. Rev. C after second review by refere

    Trap anharmonicity and sloshing mode of a Fermi gas

    Full text link
    For a gas trapped in a harmonic potential, the sloshing (or Kohn) mode is undamped and its frequency coincides with the trap frequency, independently of the statistics, interaction and temperature of the gas. However, experimental trap potentials have usually Gaussian shape and anharmonicity effects appear as the temperature and, in the case of Fermions, the filling of the trap are increased. We study the sloshing mode of a degenerate Fermi gas in an anharmonic trap within the Boltzmann equation, including in-medium effects in both the transport and collision terms. The calculated frequency shifts and damping rates of the sloshing mode due to the trap anharmonicity are in satisfactory agreement with the available experimental data. We also discuss higher-order dipole, octupole, and bending modes and show that the damping of the sloshing mode is caused by its coupling to these modes.Comment: 10 pages; v2: comparison with damping data added, minor extensions and correction

    Control of defect-mediated tunneling barrier heights in ultrathin MgO films

    Full text link
    The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O2_2 to the Ar plasma during MgO growth alters the oxygen defect populations, leading to improved local tunneling characteristics such as a lower density of current hotspots and a lower tunnel current amplitude. We discuss a defect-based potential landscape across ultrathin MgO barriers.Comment: 4 pages, 4 figure

    The pi -> pi pi process in nuclei and the restoration of chiral symmetry

    Full text link
    The results of an extensive campaign of measurements of the pi -> pi pi process in the nucleon and nuclei at intermediate energies are presented. The measurements were motivated by the study of strong pi pi correlations in nuclei. The analysis relies on the composite ratio C_{pi pi}^A, which accounts for the clear effect of the nuclear medium on the (pi pi) system. The comparison of the C_{pi pi}^A distributions for the (pi pi)_{I=J=0} and (pi pi)_{I=0,J=2} systems to the model predictions indicates that the C_{pi pi}^A behavior in proximity of the 2m_pi threshold is explainable through the partial restoration of chiral symmetry in nuclei.Comment: accepted for publication in Nucl. Phys.

    In-medium pi-pi Correlation Induced by Partial Restoration of Chiral Symmetry

    Get PDF
    We show that both the linear and the non-linear chiral models give an enhancement of the pi-pi cross section near the 2pi threshold in the scalar-iso-scalar (I=J=0) channel in nuclear matter. The reduction of the chiral condensate, i.e., the partial chiral restoration in nuclear matter, is responsible for the enhancement in both cases. We extract an effective 4pi-nucleon vertex which is responsible for the enhancement but has not been considered in the non-liear models for in-medium pi-pi interaction. Relation of this vertex and a next-to-leading order terms in the heavy-baryon chiral lagrangian, L_piN^(2), is also discussed.Comment: 5 pages, 5 eps figure, REVTe

    Medium Modification of The Pion-Pion Interaction at Finite Density

    Get PDF
    We discuss medium modifications of the unitarized pion-pion interaction in the nuclear medium. We incorporate both the effects of chiral symmetry restoration and the influence of collective nuclear pionic modes originating from the p-wave coupling of the pion to delta-hole configurations. We show in particular that the dropping of the sigma meson mass significantly enhances the low energy structure created by the in-medium collective pionic modes.Comment: 26 pages, 7 figures included, Latex fil

    The σ\sigma meson in a nuclear medium through two pion photoproduction

    Full text link
    We present theoretical results for (γ,π0π0)(\gamma, \pi^0 \pi^0) production on nucleons and nuclei in the kinematical region where the scalar isoscalar ππ\pi \pi amplitude is influenced by the σ\sigma pole. The final state interaction of the pions modified by the nuclear medium produces a spectacular shift of strength of the two pion invariant mass distribution induced by the moving of the σ\sigma pole to lower masses and widths as the nuclear density increases.Comment: 14 pages, 7 figure

    General properties of the pion production reaction in nuclear matter

    Full text link
    The pion production reaction π+π+π±\pi^+ \to \pi^+\pi^{\pm} on 45Sc^{45}Sc was studied at incident pion energies of Tπ+T_{\pi^{+}} = 240, 260, 280, 300, and 320 MeV. The experiment was performed using the M11M11 pion-channel at TRIUMF, and multiparticle events, (π+,π+π±\pi^+,\pi^+\pi^{\pm}) and (π+,π+π±p\pi^+,\pi^+\pi^{\pm}p), were detected with the CHAOS spectrometer. Results are reported in the form of both differential and total cross sections, and are compared to theoretical predictions and the reaction phase space. The present investigation of the T-dependence of the π+Aπ+π±A\pi^+ A \to \pi^+\pi^{\pm} A' reaction complements earlier examinations of the A-dependence of the reaction, which was measured using 2H^{2}H, 4He^{4}He, 12C^{12}C, 16O^{16}O, 40Ca^{40}Ca, and 208Pb^{208}Pb targets at \sim280 MeV. Some general properties of the pion-induced pion production reaction in nuclear matter will be presented, based on the combined results of the two studies.Comment: 23 pages, Latex, accepted for publication in Nucl. Phys.

    The ππ\pi\pi interaction in nuclear matter from a study of the π+Aπ+π±A\pi^+ A \to \pi^+ \pi^{\pm} A' reactions

    Full text link
    The pion-production reactions π+Aπ+π±A\pi^+ A \to \pi^+\pi^{\pm} A' were studied on 2H^{2}H, 12C^{12}C, 40Ca^{40}Ca, and 208Pb^{208}Pb nuclei at an incident pion energy of Tπ+T_{\pi^{+}}=283 MeV. Pions were detected in coincidence using the CHAOS spectrometer. The experimental results are reduced to differential cross sections and compared to both theoretical predictions and the reaction phase space. The composite ratio C\cal CππA_{\pi\pi}^A between the π+π±\pi^{+}\pi^{\pm} invariant masses on nuclei and on the nucleon is also presented. Near the 2mπ2m_{\pi} threshold pion pairs couple to (ππ)I=J=0(\pi\pi)_{I=J=0} when produced in the π+π+π\pi^+\to \pi^+\pi^- reaction channel. There is a marked near-threshold enhancement of C\cal Cπ+πA_{\pi^+\pi^-}^A which is consistent with theoretical predictions addressing the partial restoration of chiral symmetry in nuclear matter. Furthermore, the behaviour of C\cal Cπ+πA_{\pi^+\pi^-}^A is well described when the restoration of chiral symmetry is combined with standard P-wave renormalization of pions in nuclear matter. On the other hand, nuclear matter only weakly influences C\cal Cπ+π+A_{\pi^+\pi^+}^A, which displays a flat behaviour throughout the energy range regardless of AA.Comment: 30 pages, 16 figures, PS format, accepted for publication in Nucl. Phys
    corecore