33 research outputs found
Anatomy of an Asteroid Break-Up: The Case of P/2013 R3
We present an analysis of new and published data on P/2013 R3, the first
asteroid detected while disintegrating. Thirteen discrete components are
measured in the interval between UT 2013 October 01 and 2014 February 13. We
determine a mean, pair-wise velocity dispersion amongst these components of
m s and find that their separation times are
staggered over an interval of 5 months. Dust enveloping the system has,
in the first observations, a cross-section 30 km but fades
monotonically at a rate consistent with the action of radiation pressure
sweeping. The individual components exhibit comet-like morphologies and also
fade except where secondary fragmentation is accompanied by the release of
additional dust. We find only upper limits to the radii of any embedded solid
nuclei, typically 100 to 200 m (geometric albedo 0.05 assumed). Combined,
the components of P/2013 R3 would form a single spherical body with radius
400 m, which is our best estimate of the size of the precursor
object. The observations are consistent with rotational disruption of a weak
(cohesive strength 50 to 100 N m) parent body, 400 m in
radius. Estimated radiation (YORP) spin-up times of this parent are 1
Myr, shorter than the collisional lifetime. If present, water ice sublimating
at as little as 10 kg s could generate a torque on the parent
body rivaling the YORP torque. Under conservative assumptions about the
frequency of similar disruptions, the inferred asteroid debris production rate
is 10 kg s, which is at least 4% of the rate needed to
maintain the Zodiacal Cloud.Comment: 44 pages, 13 figures, accepted by Astronomical Journa
TNOs are cool: a survey of the transneptunian region
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well
Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation
Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice
TNOs are Cool: A Survey of the Trans-Neptunian Region: Radiometric properties of Trans-Neptunian Objects
The "TNOs are Cool: A Survey of the Trans-Neptunian Region" project is a Herschel Open Time Key Program awarded some 370 h of Herschel observing time. The observations include PACS and SPIRE point-source photometry on about 140 trans-Neptunian objects with known orbits. The goal is to characterize the individual objects and the full sample using radiometric techniques, in order to probe formation and evolution processes in the Solar System and to establish a benchmark for understanding the Solar System debris disk as well as extra-solar ones. We present results on a set of TNOs which were selected for the Science Demonstration and early mission phases and report on progress in deriving effective sizes, geometric albedos, and thermal characteristics. Our early sample also includes binary objects for which density estimates can be made on the basis of the derived diameters. TNO densities can provide insight into Solar-System formation scenarios
Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation
Water, energy, and food are all essential components of human societies. Collectively, their respective resource systems are interconnected in what is called the “nexus”. There is growing consensus that a holistic understanding of the interdependencies and trade-offs between these sectors and other related systems is critical to solving many of the global challenges they present. While nexus research has grown exponentially since 2011, there is no unified, overarching approach, and the implementation of concepts remains hampered by the lack of clear case studies. Here, we present the results of a collaborative thought exercise involving 75 scientists and summarize them into 10 key recommendations covering: the most critical nexus issues of today, emerging themes, and where future efforts should be directed. We conclude that a nexus community of practice to promote open communication among researchers, to maintain and share standardized datasets, and to develop applied case studies will facilitate transparent comparisons of models and encourage the adoption of nexus approaches in practice