2,578 research outputs found

    Radiometer Calibration Using Colocated GPS Radio Occultation Measurements

    Get PDF
    We present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earth's limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015

    Radiometer Calibration Using Colocated GPS Radio Occultation Measurements

    Get PDF
    We present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earth's limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002

    The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations

    Get PDF
    We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of (25 h1Mpc)3(25~h^{-1}{\rm Mpc})^3 volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying Ωm\Omega_m, σ8\sigma_8, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of (400 h1Mpc)3(400~h^{-1}{\rm Mpc})^3. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.Comment: 33 pages, 18 figures, CAMELS webpage at https://www.camel-simulations.or

    A randomised phase 2a study to investigate the effects of blocking interleukin-33 with tozorakimab in patients hospitalised with COVID-19:Accord-2

    Get PDF
    BACKGROUND: Increased serum interleukin (IL)-33 predicts poor outcomes in patients hospitalised with coronavirus disease 2019 (COVID-19). We examined the efficacy and safety of tozorakimab, a monoclonal antibody that neutralises IL-33, in improving outcomes in ACCORD-2 (EudraCT: 2020-001736-95).METHODS: ACCORD-2 was an open-label, phase 2a study in adults hospitalised with COVID-19. Patients were randomised 1:1 to tozorakimab 300 mg plus standard of care (SoC) or SoC alone. The primary end-point was time to clinical response (sustained clinical improvement of ≥2 points on the World Health Organization ordinal scale, discharge from hospital or fit for discharge) by day 29. Other end-points included death or respiratory failure, mortality and intensive care unit admission by day 29, and safety. Serum IL-33/soluble stimulated-2 (sST2) complex levels were measured by high-sensitivity immunoassay.RESULTS: Efficacy analyses included 97 patients (tozorakimab+SoC, n=53; SoC, n=44). Median time to clinical response did not differ between the tozorakimab and SoC arms (8.0 and 9.5 days, respectively; HR 0.96, 80% CI 0.70-1.31; one-sided p=0.33). Tozorakimab was well tolerated and the OR for risk of death or respiratory failure with treatment versus SoC was 0.55 (80% CI 0.27-1.12; p=0.26), while the OR was 0.31 (80% CI 0.09-1.06) in patents with high baseline serum IL-33/sST2 complex levels.CONCLUSIONS: Overall, ACCORD-2 results suggest that tozorakimab could be a novel therapy for patients hospitalised with COVID-19, warranting further investigation in confirmatory phase 3 studies.</p

    HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness

    Get PDF
    High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified HNRNPM as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and back-splicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM dependent linear splicing events using splice-switching-antisense-oligonucleotides (SSOs) was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors

    Nomogram to Predict Insignificant Prostate Cancer at Radical Prostatectomy in Korean Men: A Multi-Center Study

    Get PDF
    PURPOSE: Due to the availability of serum prostate specific antigen (PSA) testing, the detection rate of insignificant prostate cancer (IPC) is increasing. To ensure better treatment decisions, we developed a nomogram to predict the probability of IPC. MATERIALS AND METHODS: The study population consisted of 1,471 patients who were treated at multiple institutions by radical prostatectomy without neoadjuvant therapy from 1995 to 2008. We obtained nonrandom samples of n = 1,031 for nomogram development, leaving n = 440 for nomogram validation. IPC was defined as pathologic organ-confined disease and a tumor volume of 0.5 cc or less without Gleason grade 4 or 5. Multivariate logistic regression model (MLRM) coefficients were used to construct a nomogram to predict IPC from five variables, including serum prostate specific antigen, clinical stage, biopsy Gleason score, positive cores ratio and maximum % of tumor in any core. The performance characteristics were internally validated from 200 bootstrap resamples to reduce overfit bias. External validation was also performed in another cohort. RESULTS: Overall, 67 (6.5%) patients had a so-called "insignificant" tumor in nomogram development cohort. PSA, clinical stage, biopsy Gleason score, positive core ratio and maximum % of biopsy tumor represented significant predictors of the presence of IPC. The resulting nomogram had excellent discrimination accuracy, with a bootstrapped concordance index of 0.827. CONCLUSION: Our current nomogram provides sufficiently accurate information in clinical practice that may be useful to patients and clinicians when various treatment options for screen-detected prostate cancer are consideredope

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore