1,232 research outputs found
Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell–like diffuse large B cell lymphoma
To elucidate the mechanisms underlying chromosomal translocations in diffuse large B cell lymphoma (DLBCL), we investigated the nature and extent of immunoglobulin class switch recombination (CSR) in these tumors. We used Southern blotting to detect legitimate and illegitimate CSR events in tumor samples of the activated B cell–like (ABC), germinal center B cell–like (GCB), and primary mediastinal B cell lymphoma (PMBL) subgroups of DLBCL. The frequency of legitimate CSR was lower in ABC DLBCL than in GCB DLBCL and PMBL. In contrast, ABC DLBCL had a higher frequency of internal deletions within the switch μ (Sμ) region compared with GCB DLBCL and PMBL. ABC DLBCLs also had frequent deletions within Sγ and other illegitimate switch recombinations. Sequence analysis revealed ongoing Sμ deletions within ABC DLBCL tumor clones, which were accompanied by ongoing duplications and activation-induced cytidine deaminase–dependent somatic mutations. Unexpectedly, short fragments derived from multiple chromosomes were interspersed within Sμ in one case. These findings suggest that ABC DLBCLs have abnormalities in the regulation of CSR that could predispose to chromosomal translocations. Accordingly, aberrant switch recombination was responsible for translocations in ABC DLBCLs involving BCL6, MYC, and a novel translocation partner, SPIB
Molecular diagnosis of Burkitt\u27s lymphoma.
BACKGROUND: The distinction between Burkitt\u27s lymphoma and diffuse large-B-cell lymphoma is crucial because these two types of lymphoma require different treatments. We examined whether gene-expression profiling could reliably distinguish Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma.
METHODS: Tumor-biopsy specimens from 303 patients with aggressive lymphomas were profiled for gene expression and were also classified according to morphology, immunohistochemistry, and detection of the t(8;14) c-myc translocation.
RESULTS: A classifier based on gene expression correctly identified all 25 pathologically verified cases of classic Burkitt\u27s lymphoma. Burkitt\u27s lymphoma was readily distinguished from diffuse large-B-cell lymphoma by the high level of expression of c-myc target genes, the expression of a subgroup of germinal-center B-cell genes, and the low level of expression of major-histocompatibility-complex class I genes and nuclear factor-kappaB target genes. Eight specimens with a pathological diagnosis of diffuse large-B-cell lymphoma had the typical gene-expression profile of Burkitt\u27s lymphoma, suggesting they represent cases of Burkitt\u27s lymphoma that are difficult to diagnose by current methods. Among 28 of the patients with a molecular diagnosis of Burkitt\u27s lymphoma, the overall survival was superior among those who had received intensive chemotherapy regimens instead of lower-dose regimens.
CONCLUSIONS: Gene-expression profiling is an accurate, quantitative method for distinguishing Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma
The genetic landscape of immune-competent and HIV lymphoma
This journal supplement is Proceedings of the 13th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies (ICMAOI)Open Access JournalBurkitt lymphoma (BL) and diffuse large B cell lymphoma (DLBCL) are aggressive forms of lymphoma in adults and demonstrate overlapping morphology, immunophenotype and clinical behavior. The risk of developing these tumors increases ten to hundred-fold in the setting of HIV infection. The genetic causes and the role of specific mutations, especially in the setting of HIV, are largely unknown.
The decoding of the human genome and the advent of high-throughput sequencing have provided rich opportunities for the comprehensive identification of the genetic causes of cancer. In order to comprehensively identify genes that are recurrently mutated in immune-competent DLBCL and BL, we obtained a total of 92 cases of DLBCLs and 40 cases of BL. These cases were compared to a set of 5 DLBCLs and BL tumors derived from patients with HIV. The DLBCL cases were divided into a discovery set (N=34) and …link_to_OA_fulltextThe 13th International Conference on Malignancies in AIDS and Other Acquired Immunodeficiencies (ICAMAOI), Bethesda, MD., 7-8 November 2011. In Infectious Agents and Cancer, 2011, v. 7 suppl. 1, article no. O
Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, and fewer than half of patients are cured with standard front-line therapy. To improve therapeutic options, better animal models that accurately mimic human DLBCL (hDLBCL) are needed. Canine DLBCL (cDLBCL), one of the most common cancers in veterinary oncology, is morphologically similar to hDLBCL and is treated using similar chemotherapeutic protocols. With genomic technologies, it is now possible to molecularly evaluate dogs as a potential large-animal model for hDLBCL. We evaluated canine B-cell lymphomas (cBCLs) using immunohistochemistry and gene expression profiling. Canine B-cell lymphoma expression profiles were similar in many ways to hDLBCLs. For instance, a subset had increased expression of NF-κB pathway genes, mirroring human activated B-cell (ABC)-type DLBCL. Furthermore, immunoglobulin heavy chain (IGH) ongoing mutation status, which is correlated with ABC/germinal center B-cell (GCB) cell of origin in hDLBCL, separated cBCL into two groups with statistically different progression-free and overall survival times. In contrast with hDLBCL, cBCL rarely expressed BCL6 and MUM1/IRF4 by immunohistochemistry. Collectively, these studies identify molecular similarities to hDLBCL that introduce pet dogs as a representative model of hDLBCL for future studies, including therapeutic clinical trials
Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2
Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1 , JAK3 , STAT3 , and SOCS1 . We also identified mutations in KRAS , TP53 , and TERT . Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of γδ T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes
Correction. "The 5th edition of The World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms" Leukemia. 2022 Jul;36(7):1720-1748
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms
The genetic landscape of mutations in Burkitt lymphoma
Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene
Genetic heterogeneity of diffuse large B-cell lymphoma
Diffuse large B-cell lymphoma (DLBCL) is the most common form
of lymphoma in adults. The disease exhibits a striking heterogeneity
in gene expression profiles and clinical outcomes, but its
genetic causes remain to be fully defined. Through whole genome
and exome sequencing, we characterized the genetic diversity of
DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with
matched normal DNA). Separately, we sequenced the exomes of
21 DLBCL cell lines. We identified 322 DLBCL cancer genes that
were recurrently mutated in primary DLBCLs. We identified recurrent
mutations implicating a number of known and not previously
identified genes and pathways in DLBCL including those related to
chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and
TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage
(IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also
experimentally validated a mutation in PIK3CD, a gene not previously
implicated in lymphomas. The patterns of mutation demonstrated
a classic long tail distribution with substantial variation
of mutated genes from patient to patient and also between published
studies. Thus, our study reveals the tremendous genetic
heterogeneity that underlies lymphomas and highlights the need
for personalized medicine approaches to treating these patients
Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility
Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
- …