66 research outputs found

    The Peripheral Stalk of Rotary ATPases

    Get PDF
    Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved

    Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels

    Get PDF
    International audienceTerahertz imaging and conventional X-ray have been used to investigate a sealed Ancient Egyptian jar preserved at the Museum of Aquitaine (France). Terahertz radiation revealed an unknown content that could not have been visualized by X-ray. By comparison with a model object, we concluded that this content was composed of organic materials explaining their relative radiolucency

    Intersubunit ionic interactions stabilize the nucleoside diphosphate kinase of <i>Mycobacterium tuberculosis</i>

    Get PDF
    Most nucleoside diphosphate kinases (NDPKs) are hexamers. The C-terminal tail interacting with the neighboring subunits is crucial for hexamer stability. In the NDPK from Mycobacterium tuberculosis (Mt) this tail is missing. The quaternary structure of Mt-NDPK is essential for full enzymatic activity and for protein stability to thermal and chemical denaturation. We identified the intersubunit salt bridge Arg(80)-Asp(93) as essential for hexamer stability, compensating for the decreased intersubunit contact area. Breaking the salt bridge by the mutation D93N dramatically decreased protein thermal stability. The mutation also decreased stability to denaturation by urea and guanidinium. The D93N mutant was still hexameric and retained full activity. When exposed to low concentrations of urea it dissociated into folded monomers followed by unfolding while dissociation and unfolding of the wild type simultaneously occur at higher urea concentrations. The dissociation step was not observed in guanidine hydrochloride, suggesting that low concentration of salt may stabilize the hexamer. Indeed, guanidinium and many other salts stabilized the hexamer with a half maximum effect of about 0.1 M, increasing protein thermostability. The crystal structure of the D93N mutant has been solved

    Specific Evolution of F1-Like ATPases in Mycoplasmas

    Get PDF
    F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells

    Un enclos circulaire du Bronze final sur les sites de Montamat à Tonneins (Lot-et-Garonne)

    No full text
    ABSTRACT The study of a Late Bronze Age circular enclosure excavated in 1981 in Tonneins provides precious complementary information to our knowledge of regional groups of this period, but contributes equally to throw new light on the funeral rites of the end of the Bronze Age and the Early Iron Age.RÉSUMÉ L'étude d'un enclos circulaire du Bronze final fouillé en 1981 à Tonneins permet d'apporter de précieux compléments pour la connaissance des groupes régionaux de cette période mais contribue également à donner un éclairage nouveau sur les rites funéraires de la fin de l'Age du Bronze et du début de l'Age du Fer.Beyneix Alain, Dautant Alain. Un enclos circulaire du Bronze final sur les sites de Montamat à Tonneins (Lot-et-Garonne). In: Bulletin de la Société préhistorique française, tome 92, n°4, 1995. pp. 519-524

    Inventory of the 21st/22nd Dynasties Yellow Coffins in the French Museums

    No full text
    International audienc

    21st Dynasty Coffins in the French Museums

    No full text
    International audienc

    Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization

    No full text
    International audienceMost oligomeric proteins become active only after assembly, but why oligomerization is required to support function is not well understood. Here, we address this question using the WT and a destabilized mutant (D93N) of the hexameric nucleoside diphosphate kinase from the pathogen Mycobacterium tuberculosis (Mt-NDPK). The conformational dynamics and oligomeric states of each were analyzed during unfolding/folding by Hydrogen/Deuterium exchange mass spectrometry (HDX-MS) at peptide resolution and by additional biochemical techniques. We found that WT and D93N native hexamers present a stable core and a flexible periphery, the latter being more flexible for the destabilized mutant. Stable but inactive species formed during unfolding of D93N and folding of WT were characterized. For the first time, we show that both of these species are native-like dimers, each of its monomers having a major subdomain folded, while a minor subdomain (Kpn/α 0) remains unfolded. The Kpn/α 0 subdomain, which belongs to the catalytic site, becomes structured only upon hexamerization, explaining why oligomerization is required for NDPK activity. Further HDX-MS studies are necessary to establish the general activation mechanism for other homo-oligomers
    • …
    corecore