84 research outputs found
About coherent structures in random shell models for passive scalar advection
A study of anomalous scaling in models of passive scalar advection in terms
of singular coherent structures is proposed. The stochastic dynamical system
considered is a shell model reformulation of Kraichnan model. We extend the
method introduced in \cite{DDG99} to the calculation of self-similar instantons
and we show how such objects, being the most singular events, are appropriate
to capture asymptotic scaling properties of the scalar field. Preliminary
results concerning the statistical weight of fluctuations around these optimal
configurations are also presented.Comment: 4 pages, 2 postscript figures, submitted to PR
Surmounting collectively oscillating bottlenecks
We study the collective escape dynamics of a chain of coupled, weakly damped
nonlinear oscillators from a metastable state over a barrier when driven by a
thermal heat bath in combination with a weak, globally acting periodic
perturbation. Optimal parameter choices are identified that lead to a drastic
enhancement of escape rates as compared to a pure noise-assisted situation. We
elucidate the speed-up of escape in the driven Langevin dynamics by showing
that the time-periodic external field in combination with the thermal
fluctuations triggers an instability mechanism of the stationary homogeneous
lattice state of the system. Perturbations of the latter provided by incoherent
thermal fluctuations grow because of a parametric resonance, leading to the
formation of spatially localized modes (LMs). Remarkably, the LMs persist in
spite of continuously impacting thermal noise. The average escape time assumes
a distinct minimum by either tuning the coupling strength and/or the driving
frequency. This weak ac-driven assisted escape in turn implies a giant speed of
the activation rate of such thermally driven coupled nonlinear oscillator
chains
Fluctuation-response relation in turbulent systems
We address the problem of measuring time-properties of Response Functions
(Green functions) in Gaussian models (Orszag-McLaughin) and strongly
non-Gaussian models (shell models for turbulence). We introduce the concept of
{\it halving time statistics} to have a statistically stable tool to quantify
the time decay of Response Functions and Generalized Response Functions of high
order. We show numerically that in shell models for three dimensional
turbulence Response Functions are inertial range quantities. This is a strong
indication that the invariant measure describing the shell-velocity
fluctuations is characterized by short range interactions between neighboring
shells
Anomalous and dimensional scaling in anisotropic turbulence
We present a numerical study of anisotropic statistical fluctuations in
homogeneous turbulent flows. We give an argument to predict the dimensional
scaling exponents, (p+j)/3, for the projections of p-th order structure
function in the j-th sector of the rotational group. We show that measured
exponents are anomalous, showing a clear deviation from the dimensional
prediction. Dimensional scaling is subleading and it is recovered only after a
random reshuffling of all velocity phases, in the stationary ensemble. This
supports the idea that anomalous scaling is the result of a genuine inertial
evolution, independent of large-scale behavior.Comment: 4 pages, 3 figure
IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor, Part III: Energy Levels and Transition Wavenumbers for H216O
This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O contains two components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184667 of which 182156 are validated: 68027 between para states and 114129 ortho ones. These transitions give rise to 18486 validated energy levels, of which 10446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved
Oscillatory Instabilities of Standing Waves in One-Dimensional Nonlinear Lattices
In one-dimensional anharmonic lattices, we construct nonlinear standing waves
(SWs) reducing to harmonic SWs at small amplitude. For SWs with spatial
periodicity incommensurate with the lattice period, a transition by breaking of
analyticity versus wave amplitude is observed. As a consequence of the
discreteness, oscillatory linear instabilities, persisting for arbitrarily
small amplitude in infinite lattices, appear for all wave numbers Q not equal
to zero or \pi. Incommensurate analytic SWs with |Q|>\pi/2 may however appear
as 'quasi-stable', as their instability growth rate is of higher order.Comment: 4 pages, 6 figures, to appear in Phys. Rev. Let
Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)
The report of an IUPAC Task Group, formed in 2011 on "Intensities and line
shapes in high-resolution spectra of water isotopologues from experiment and
theory" (Project No. 2011-022-2-100), on line profiles of isolated
high-resolution rotational-vibrational transitions perturbed by neutral
gas-phase molecules is presented. The well-documented inadequacies of the Voigt
profile (VP), used almost universally by databases and radiative-transfer
codes, to represent pressure effects and Doppler broadening in isolated
vibrational-rotational and pure rotational transitions of the water molecule
have resulted in the development of a variety of alternative line-profile
models. These models capture more of the physics of the influence of pressure
on line shapes but, in general, at the price of greater complexity. The Task
Group recommends that the partially Correlated quadratic-Speed-Dependent
Hard-Collision profile should be adopted as the appropriate model for
high-resolution spectroscopy. For simplicity this should be called the
Hartmann--Tran profile (HTP). The HTP is sophisticated enough to capture the
various collisional contributions to the isolated line shape, can be computed
in a straightforward and rapid manner, and reduces to simpler profiles,
including the Voigt profile, under certain simplifying assumptions.Comment: Accepted for publication in Pure and Applied Chemistr
IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor, Part III: Energy Levels and Transition Wavenumbers for H216O
This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O contains two components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184667 of which 182156 are validated: 68027 between para states and 114129 ortho ones. These transitions give rise to 18486 validated energy levels, of which 10446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved
- …