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We present a numerical study anfisotropicstatistical fluctuations ihomogeneousirbulent flows. We give
a new argument to predict the dimensional scaling exponeg(tp):(p+j)/3, for the projections of theth
order structure function in thgth sector of the rotational group. We show that the measured exponents are
anomalous, showing a clear deviation from the dimensional prediction. Dimensional scaling is subleading and
connected to the dynamical fluctuations without phase correlations. Universality of the observed anomalous
scaling is discussed both theoretically and by means of numerical simulations at different Reynolds numbers
and with different forcing.

DOI: 10.1103/PhysReVvE.66.056306 PACS nunt®erd7.27.Ak, 47.10+g, 47.27.Eq

In recent years a huge amount of theoretical, numerical, Theoretically speaking, there exists only one previous at-
and experimental work has been done in order to study artempt to give an estimate for scaling exponents of the second
isotropic turbulent fluctuationfl—11]. Typical questions go order moment and in all sectdi@]. In Ref.[9], a mean-field
from the theoretical point of calculating and measuringprediction was formulated for anisotropic scaling of second-
anomalous scaling exponents in anisotropic se¢®*$,10, order structure functions obtained by ch_anging the analyt.ical
to the more applied problem of quantifying the rate of recov-Properties of the external forcing. In this paper we provide
ery of isotropy at small scalekl,2,7. Another important WO different results on this important topic. First, we present

issue is the universality of anisotropic scaling exponents, i.e& “dimensional” argument able to predict the scaling prop-
whether they are an intrinsic characteristic of the Navier-ETli€S Of any moment in any anisotropic sector on the basis of
“local” matching between nonlinear and shear-induced

Stokes nonlinear evolution or they are fixed by the externaferms " the inertial ranae. Such a dimensional brediction
anisotropic forcing. ge. p

Important steps forward in the analysis of anisotropicShOUId play the same role played by Kolmogorov 1941

: . . . theory for isotropic fluctuations, i.e., it fixes the reference-
fluctuations have been done in Kraichnan models, i.e., pag; y b

. | ¢ dvected by isotropic. G ) yackground scaling we should expect in the anisotropic sec-
Slve scalars or veclors advected Dby ISOlropIC, ©aussian, anfq in apsence of intermittent fluctuations. Second we show

s-correlated in time velocity fieldg12], with a large-scale ot after a phase randomization of velocity Fourier compo-
anisotropic forcing[13-13. In those models, anomalous pents, structure functions posses a dimensional scaling. This
scaling arises as the result of a nontrivial null-space structurgy g clear signature that most of the anisotropic intermittency
for the advecting operatofzero model Also, correlation s prought by a nontrivial phase organization while the back-
functions in different sectors of the rotational group showground field almost follows the dimensional estimate. Fi-
different scaling properties. Scaling exponents are universahally, to comment on the universality properties of the
they do not depend on the actual value of the forcing ancinomalous anisotropic scaling, we also present some com-
boundary conditions, and they are fully characterized by theparison at changing Reynolds numbers and the large-scale
order of the anisotropy. Nonuniversal effects are felt only inforcing.
coefficients multiplying the power laws. We have performed two different sets of numerical simu-
Similar problems, such as the existence of scaling laws ifations with large-scaléiomogeneous and anisotropiierc-
anisotropic sectors and, if any, the values of the correspondng obtained by changing both Reynolds numbers and the
ing scaling exponents are at the forefront of the experimenanisotropy degree of the forcing. The first simulati@NS)
tal, numerical, and theoretical research for real turbulents @ random Kolmogorov flowRKF). The RKF is fully pe-
flows. Only a few indirect experimental investigations of riodic; the large-scale anisotropic random forcing points in
scaling in different sectorst,5] and direct decomposition in one direction,z, has a spatial dependency only from the
numerical simulation$6—8,10 have been attempted up to x coordinate and it is different from zero at the two wave
now. On a theoretical ground, the potentiality of SDde-  numbers: k;=(1,0,0)k,=(2,0,0). Namely, fi(k;;2)
composition to quantify different degrees of anisotropy for= g, 5f,; xexp(@y; »), wheref; » are fixed amplitudes and
any correlation function has been highlighted only recentlye{ljz} are independent random phasés;orrelated in time.
[3]. Preliminary experimental evidences of the existence of aye simulated the RKF at resolution 28nd 258 and col-
scaling law also in sectors with total angular momentum |ected up to 70 eddy turnover times; Reynolds numbers
=2 have been reportdd,5]. The value of the exponent for pased on the gradient scale are, R60 and Re=90, re-
the second-order correlation function being close to the dispectively. Energy is dissipated by a hyperviscosity term at
mensional estimateg:2(2)=4/3 [16]. small scales.
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The second set of simulations was forced by fixing thelations. The shear term is a large-scale “slow” quantity and
total energy on a subset of Fourier modes falling in a plangherefore, as far as scaling properties are concerned, we may
k= (ky,ky,0) with |k|<4. Both simulations are homoge- safely estimate: (S (x)u;(X")ug(x))~Djc{u; (X" )ux(x)).
neous and anisotropic, the degree of anisotropy in the lattéflere the matriD;, is associated to the combined probability
case is much smaller than in the RKF. Most of the quantitato have a given shear and a given small scale velocity con-
tive results will be discussed for the RKF. The second set ofiguration. Clearly theD;, tensor brings angular momentum
simulations is used to discuss the degree of universality obnly up toj=2. One may therefore argue, by using simple
anisotropic scaling. composition of angular momenta, the following dimensional

Anisotropy is studied by means of $&decomposition of matching[17]:
longitudinal  structure  functions, Sy(R)=({[v(x+R)

—v(x)]-ﬁ}p). Theoretical and numerical analysis showed

[3,6,1(0 that one must first decompose the structure functions

onto irreducible representations of the rotational group ana'vhere SJP(R) is the projection on th¢th sector of thepth

then study the scaling behavior of the projections. In prac—Order correlation function at scafé [see Eq(1)], andS is

tice, being the longitudinal structure functions scalar objectsthe intensity of thg shear t?rmik in the j %2 sector. For
i’pstance, the leading behavior of the 2 anisotropic sector

Lf:l;glrencigmggsmon reduces to the projections on the Spherof the third-order correlation function in the LHS of E¢)
' is given by the coupling between the=2 components of
S ‘ A Dix and thej=0 sector of the second-order velocity corre-
Sp(R)=ZO > SURDY m(R). (1) lation in the RHS of Eq(5): S2(R)~RSSYR)~R& 3,
I=mme By using the same argument and considering that now we
As usual, we use indexes,m) to label, respectively, the know th.e scaling of =0 gndj =2 sectors of the third-order
total angular momentum and its projection along a referenc&rrelation, we may estimate the scaling exponents of the

axis. save. The whole phvsical information is brouaht by the fourth-order correlation foj=2,4. The procedure is easily
> SAYZ im PNy3 . ougnt by extended to all orders, leading to the following general ex-
projectionsS;"(R). In particular, the main question we want

. . . pression:
to address here concerns their scaling properties,

S,(R)~RSS,"4(R), (5)

- m (D)
SR~ Ajul RO, @ &hp) =, ©®

First, we need an estimate for the dimensional values of thg hich has been obtained. for simplicity, by neglecting the
exponents/y"(p) in all sectors. Our argument is based onjntermittency effects in the isotropic sector.

the idea that large-scale energy pumping and/or boundary |n this way, giving as input only the isotropic exponents,
conditions are such as to enforce a large-scale anlsotroplﬁ'jzo(p) we are able to predict the scaling exponents up to
driving velocity field U. A prediction for intermediate ;_» for the third-order structure functions, je=4 for the
(small scales anisotropic fluctuations may then be obtaineg rth order toj =6 for the fifth order, and so on. We may
by studying the influence of the large scaleon the inertial 4 g |ittle better by giving a prediction also for anisotropic
range. By decomposing the velocity field in a small scaleqycruations of second-order correlation functions. This can-
componentu, and a large-scale anisotropic componéht 4t he simply obtained by using the equations of motion,
one finds the following equation for the time evolutionwf  phecayse the first one involving velocity correlations at differ-
ent spatial locations, i.e., inertial range quantities, is that for
dui(x)uj(x")), which fixes a constraint only for the third-
The major effect of the large-scale field is given by the©rder correlation function4). A way out is to ask the

instantaneous shed, = d,U; which acts as an anisotropic secon('j—orde.r amsot(oplc qucFuatlons 0 b? analyth in the
forcing term on small scales. shear intensitys consistently with what one finds for higher-

A matching argument can be built as follows. Let us ﬁrstorder structure functions by the above dimensional estimate.
consider the equation of motion for two-point quantities Vith this assumption, we recover fgr=2 Lumley predic-

(u,(x)u;(x)) in the stationary regime. We may balance in- tion [16], ¢4 “(2)=4/3 by simply writing the first two terms

ou; +ud Ui + U dui+ud U= —o;p+ VAUi . (3)

ertial terms and shear-induced terms as follows: dimensionally consistent with an expansion in the shear in-
tensity:(uu)~ (eR) 3+ €3SR*3+ . . . where the first corre-
(WX U(X) Ui (X)) ~ (S () U (X Ui(X) ), (4)  sponds to the isotropic scaling, while the second captures

anisotropies up tp=2 (higherj sectors could be captured by
which allows for a dimensional estimate of the anisotropicadding other terms in the expansipnBy using this argu-
components of the left-hand sideHS) in terms of the right-  ment, we may now remove the limit of validity of the dimen-
hand side(RHS) shear intensity and of théuu) isotropic  sional prediction(6) and extend it to alp values.
part. Let us notice that predictio(6) must be considered as the

Similarly for three-point quantities we hav@eglecting systematic generalization of Lumley argumégaf] to all

here, for simplicity, tensorial notatign{uuudu)~(Suuu)  structure functions orders and to all &Bectors. To our
which can be easily generalized to any order velocity correknowledge, this is the first prediction of scaling properties in
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FIG. 1. Comparison of scaling properties before)(and after 1 2 3 4 5 6 7
(X) phases randomization of the fourth-order structure function for P

j=4,m=0. Straight lines are the best fit slopes in the inertial range. FIG. 2. Comparison between the dimensional estimlj;ep)

In the inset, the_ changes for the logarithmic local slo_(m’ne_ = (p+])/3 (straight lines, the measured exponenit{p) (O), and

symbolg; the horizontal dashed line corresponds to the dlmensmna{he exponentsg"j(p) obtained after random dephasing ), for p

prediction {3(4):8/3. Similar results hold for other anisotropic =2,4,6. Top, s:ectojr=6; bottom, sectof=4. Error bars are esti-

sectors(not shown. mated by looking both at fluctuations in the local slopes and by
performing the same analysis on different subsamples.

all sectors and for all orders of moments. It is worth to note

that at difference with previous a_ttempts made for th_e case %g properties change significantly going from the anomalous
the second-order structure functif@, here the tensorial na- 5e (before randomizationto the dimensional prediction
ture of the shear-induced terms is taken into account. (after randomization This happens for all sectors and mo-
We come to our numerical results for the 8Ddecom-  ants e have measured, as it is summarized in Fig. 2, with
position of longitudinal structure functions. In Ré8] a first e notaple exception of the second-order structure function
quantitative analysis of scaling was presented. We repeat§fhere phase randomization has almost no effect. This is an
and extended the same analysis on a larger ensemble of CQfjzeresting fact that can have at least two explanations. Phase
figurations of the random Kolmogorov flow at two different ranqomization is not enough to completely filter out intermit-
Reynolds numbers. Now, except for the sector With2,  tency, especially for two-point quantities which should be
where a sign oscillation in the projectior;"(R), does not  |ess sensible to phase correlation. Or, as noticed before, be-
allow a quantitative estimate of exponents, we are able t@ayse second-order correlation function is not constrained by
measure with higher accuracy the scaling exponents yp to any equation of motion, dimensional scaling may never exist
=6 andp=6. All measured exponents show a clear deparfor it even not as a subleading contribution.
ture from the dimensional prediction. For example, we mea- The |ast issue we want to discuss is that of universality of
sure in thej=4 sectors the valueg’(2)=1.655), {*(4)  anomalous scaling, i.e., the dependency on the large-scale
=2.205), ¢*(6)=2.55(10), and in thg=6 sector,{®(2)  forcing mechanism.
=3.2(2), {%(4)=3.1(2), {°(6)=3.3(2). This is a clear in- In Kraichnan models there exists a tight link between the
dication that anisotropic scaling exponents are intermittentpresence of anomalous scaling and its universality, due to the

Nevertheless, the dimensional predicti@ plays an impor-  zero-mode mechanisifil2]. Unfortunately, in the Navier-
tant role in fixing the subleading background scaling as it can

be demonstrated by looking at those fluctuations which are
phase independent.

We have taken the stationary configurations of the RKF
and randomly reshuffled all velocity phasesﬂi(k)
—>Pi,(k)ﬁ|(k)exp[i0,(k)], where P;; (k) is the incompress-
ibility projector. Doing so, we expect to filter out the domi-
nant intermittent fluctuations coming from the inertial evolu-
tion, or at least those intermittent contributions connected to
nontrivial phase organization. In other words, we expect that
once canceled the anomalous fluctuations, the subdominant ) ) L]
fluctuations due to the dimensional balancing with the 20 30 40 50 60 70
forcing-shear terms will show up. It is worth to remark that R
after phase randomization the statistics of the velocity field g, 3. Log-log plot of the most intense anisotropic sectors for

still stays non-Gaussian, because velocity Fourier amplitudesyycture functions of order 2 and 4, at changing Reynolds numbers
are not changed. and large-scale forcing. On the top, three cun&giR) for the

In Fig. 1 we show the results for the decomposition of therkF at Rg =60 (O) and Rg=90 (A), and for the second large-
fourth-order structure function@fter phase randomizatipn scale forcingsee textat Rg =90 (). In the bottom, the same but
in the j=4,m=0 anisotropic sector. As it can be seen, scal-for S;YR).

SR
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Stokes case the linear hierarchy of equations governing thecaling might be universal. Clearly, much more extensive
spatial-time evolution of th@th point correlation functions tests at higher Reynolds numbers and with different aniso-
is not closed. Inertial solutions with different scaling expo- tropic forcings have to be performed before drawing any firm
nents obtained by changing the large-scale forcing may the@onclusion on the issue. In conclusions we have presented a
exist, while in the Kraichnan case only prefactors of the scaldimensional argument able to predict scaling exponents for
ing laws depend on the large-scale forcing. Because of this, #ll structure functions in any anisotropic sector. We have
is of primary importance to compare different experimentsShown by DNS that anisotropic scaling exponents deviate

and numerical simulations in order to understand the degrefom the previous dimensional prediction, showing anoma-
of universality of the inertial range scaling. lous values. When performing a random reshuffling of all

In Fig. (3) we compare the scaling properties of the mostVe'c’City phases, the dimensional .SC?‘“”Q' otherwise S“b"?ad'
important anisotropic contributions for second- and fourth-1N9: shows up. The present work is intended to give qualita-

order structure functions for two different forcings and two tive indications about anisotropic anomalous fluctuations
. when varying the forcing and the Reynolds number.
different Reynolds numbers.

As it can be seen, despite the anisotropic contributions for \We thank I. Arad, M. Cencini, and M. Vergassola for use-
the second forcing being much noisier at large scale, we havieil comments. This research was supported in part by the EU
a quite good qualitative agreement for the scaling propertieander Grant No. HPRN-CT 2000-00162, “Non Ideal Turbu-
in the inertial range. This is a first indication that anisotropiclence” and by the INFM(Iniziativa di Calcolo Parallelo
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