15,472 research outputs found

    Non-equilibrium current and electron pumping in nanostructures

    Full text link
    We discuss a numerical method to study electron transport in mesoscopic devices out of equilibrium. The method is based on the solution of operator equations of motion, using efficient Chebyshev time propagation techniques. Its peculiar feature is the propagation of operators backwards in time. In this way the resource consumption scales linearly with the number of states used to represent the system. This allows us to calculate the current for non-interacting electrons in large one-, two- and three-dimensional lead-device configurations with time-dependent voltages or potentials. We discuss the technical aspects of the method and present results for an electron pump device and a disordered system, where we find transient behaviour that exists for a very long time and may be accessible to experiments.Comment: 4 pages, 3 figures. Contribution to the International Conference on Magnetism (ICM) 2009 in Karlsruh

    Sample-specific and Ensemble-averaged Magnetoconductance of Individual Single-Wall Carbon Nanotubes

    Full text link
    We discuss magnetotransport measurements on individual single-wall carbon nanotubes with low contact resistance, performed as a function of temperature and gate voltage. We find that the application of a magnetic field perpendicular to the tube axis results in a large magnetoconductance of the order of e^2/h at low temperature. We demonstrate that this magnetoconductance consists of a sample-specific and of an ensemble-averaged contribution, both of which decrease with increasing temperature. The observed behavior resembles very closely the behavior of more conventional multi-channel mesoscopic wires, exhibiting universal conductance fluctuations and weak localization. A theoretical analysis of our experiments will enable to reach a deeper understanding of phase-coherent one-dimensional electronic motion in SWNTs.Comment: Replaced with published version. Minor changes in tex

    Embedding approach for dynamical mean field theory of strongly correlated heterostructures

    Get PDF
    We present an embedding approach based on localized basis functions which permits an efficient application of the dynamical mean field theory (DMFT) to inhomogeneous correlated materials, such as semi-infinite surfaces and heterostructures. In this scheme, the semi-infinite substrate leads connected to both sides of the central region of interest are represented via complex, energy-dependent embedding potentials that incorporate one-electron as well as many-body effects within the substrates. As a result, the number of layers which must be treated explicitly in the layer-coupled DMFT equation is greatly reduced. To illustrate the usefulness of this approach, we present numerical results for strongly correlated surfaces, interfaces, and heterostructures of the single-band Hubbard model.Comment: 8 pages, 4 figures; typos correcte

    Electron transport through an interacting region: The case of a nonorthogonal basis set

    Full text link
    The formula derived by Meir and Wingreen [Phys. Rev. Lett. {\bf 68}, 2512 (1992)] for the electron current through a confined, central region containing interactions is generalized to the case of a nonorthogonal basis set. As in the original work, the present derivation is based on the nonequilibrium Keldysh formalism. By replacing the basis functions of the central region by the corresponding elements of the dual basis, the lead- and central region-subspaces become mutually orthogonal. The current formula is then derived in the new basis, using a generalized version of second quantization and Green's function theory to handle the nonorthogonality within each of the regions. Finally, the appropriate nonorthogonal form of the perturbation series for the Green's function is established for the case of electron-electron and electron-phonon interactions in the central region.Comment: Added references. 8 pages, 1 figur

    Current Induced Order Parameter Dynamics: Microscopic Theory Applied to Co/Cu/Co spin valves

    Full text link
    Transport currents can alter alter order parameter dynamics and change steady states in superconductors, in ferromagnets, and in hybrid systems. In this article we present a scheme for fully microscopic evaluation of order parameter dynamics that is intended for application to nanoscale systems. The approach relies on time-dependent mean-field-theory, on an adiabatic approximation, and on the use of non-equilibrium Greens function (NEGF) theory to calculate the influence of a bias voltage across a system on its steady-state density matrix. We apply this scheme to examine the spin-transfer torques which drive magnetization dynamics in Co/Cu/Co spin-valve structures. Our microscopic torques are peaked near Co/Cu interfaces, in agreement with most previous pictures, but suprisingly act mainly on Co transition metal dd-orbitals rather than on ss-orbitals as generally supposed.Comment: 9 pages, 5 figure

    Reducing Penguin Pollution

    Full text link
    The most common decay used for measuring 2beta_s, the phase of Bs-Bsbar mixing, is Bs -> J/psi phi. This decay is dominated by the colour-suppressed tree diagram, but there are other contributions due to gluonic and electroweak penguin diagrams. These are often referred to as "penguin pollution" (PP) because their inclusion in the amplitude leads to a theoretical error in the extraction of 2beta_s from the data. In the standard model (SM), it is estimated that the PP is negligible, but there is some uncertainty as to its exact size. Now, phi_s^{c\bar{c}s} (the measured value of 2beta_s) is small, in agreement with the SM, but still has significant experimental errors. When these are reduced, if one hopes to be able to see clear evidence of new physics (NP), it is crucial to have the theoretical error under control. In this paper, we show that, using a modification of the angular analysis currently used to measure phi_s^{c\bar{c}s} in Bs -> J/psi phi, one can reduce the theoretical error due to PP. Theoretical input is still required, but it is much more modest than entirely neglecting the PP. If phi_s^{c\bar{c}s} differs from the SM prediction, this points to NP in the mixing. There is also enough information to test for NP in the decay. This method can be applied to all Bs/Bsbar -> V1 V2 decays.Comment: 17 pages, latex, extensive discussion of theoretical error added, reference added. Further revision: even more detailed discussion of theoretical error added, as well as an explanation of why the NP strong phase is negligibl

    Mass and Scalar Cross-sections for Neutralino Dark Matter in Anomaly Mediated Supersymmetry Breaking Model

    Full text link
    We have considered neutralino to be the lightest supersymmetric particle (LSP) in the framework of minimal Anomaly Mediated Supersymmetric (mAMSB) model. We have studied variation of neutralino mass with the supersymmetric parameters. Considering these neutralinos to be the candidates for weakly interacting massive particle (WIMP) or cold dark matter (CDM), we have calculated the neutralino nucleon scalar cross-sections and compared them with DAMA-NaI neutralino direct detection search results. From this study we observe that the mAMSB model results cannot explain the allowed region in WIMP mass and WIMP-nucleon scalar cross-section space obtained from annual modulation signature in DAMA-NaI experiment.Comment: 7 Pages LaTeX, 4 figures, J. Phys. G., to appea

    Conductance of a quantum point contact based on spin-density-functional theory

    Full text link
    We present full quantum mechanical conductance calculations of a quantum point contact (QPC) performed in the framework of the density functional theory (DFT) in the local spin-density approximation (LDA). We show that a spin-degeneracy of the conductance channels is lifted and the total conductance exhibits a broad plateau-like feature at 0.5*2e^{2}/h. The lifting of the spin-degeneracy is a generic feature of all studied QPC structures (both very short and very long ones; with the lengths in the range 40<l<500 nm). The calculated conductance also shows a hysteresis for forward- and backward sweeps of the gate voltage. These features in the conductance can be traced to the formation of weakly coupled quasi-bound states (magnetic impurities) inside the QPC (also predicted in previous DFT-based studies). A comparison of obtained results with the experimental data shows however, that while the spin-DFT based "first-principle" calculations exhibits the spin polarization in the QPC, the calculated conductance clearly does not reproduce the 0.7 anomaly observed in almost all QPCs of various geometries. We critically examine major features of the standard DFT-based approach to the conductance calculations and argue that its inability to reproduce the 0.7 anomaly might be related to the infamous derivative discontinuity problem of the DFT leading to spurious self-interaction errors not corrected in the standard LDA. Our results indicate that the formation of the magnetic impurities in the QPC might be an artefact of the LDA when localization of charge is expected to occur. We thus argue that an accurate description of the QPC structure would require approaches that go beyond the standard DFT+LDA schemes.Comment: 9 pages, 5 figure

    Possible origin of the 0.5 plateau in the ballistic conductance of quantum point contacts

    Full text link
    A non-equilibrium Green function formalism (NEGF) is used to study the conductance of a side-gated quantum point contact (QPC) in the presence of lateral spin-orbit coupling (LSOC). A small difference of bias voltage between the two side gates (SGs) leads to an inversion asymmetry in the LSOC between the opposite edges of the channel. In single electron modeling of transport, this triggers a spontaneous but insignificant spin polarization in the QPC. However, the spin polarization of the QPC is enhanced substantially when the effect of electron-electron interaction is included. The spin polarization is strong enough to result in the occurrence of a conductance plateau at 0.5G0 (G0 = 2e2/h) in the absence of any external magnetic field. In our simulations of a model QPC device, the 0.5 plateau is found to be quite robust and survives up to a temperature of 40K. The spontaneous spin polarization and the resulting magnetization of the QPC can be reversed by flipping the polarity of the source to drain bias or the potential difference between the two SGs. These numerical simulations are in good agreement with recent experimental results for side-gated QPCs made from the low band gap semiconductor InAs

    The Berry phase of dislocations in graphene and valley conserving decoherence

    Get PDF
    We demonstrate that dislocations in the graphene lattice give rise to electron Berry phases equivalent to quantized values {0,1/3,-1/3} in units of the flux quantum, but with an opposite sign for the two valleys. An elementary scale consideration of a graphene Aharonov-Bohm ring equipped with valley filters on both terminals, encircling a dislocation, says that in the regime where the intervalley mean free path is large compared to the intravalley phase coherence length, such that the valley quantum numbers can be regarded as conserved on the relevant scale, the coherent valley-polarized currents sensitive to the topological phases have to traverse the device many times before both valleys contribute, and this is not possible at intermediate temperatures where the latter length becomes of order of the device size, thus leading to an apparent violation of the basic law of linear transport that magnetoconductance is even in the applied flux. We discuss this discrepancy in the Feynman path picture of dephasing, when addressing the transition from quantum to classical dissipative transport. We also investigate this device in the scattering matrix formalism, accounting for the effects of decoherence by the Buttiker dephasing voltage probe type model which conserves the valleys, where the magnetoconductance remains even in the flux, also when different decoherence times are allowed for the individual, time reversal connected, valleys.Comment: 14 pages, 7 figures; revised text, added figure, accepted for publication by PR
    corecore