16 research outputs found

    The combination of arsenic, interferon-alpha, and zidovudine restores an “immunocompetent-like” cytokine expression profile in patients with adult T-cell leukemia lymphoma

    Get PDF
    BACKGROUND: HTLV-I associated adult T-cell leukemia/lymphoma (ATL) carries a dismal prognosis due to chemo-resistance and immuno-compromised micro-environment. The combination of zidovudine and interferon-alpha (IFN) significantly improved survival in ATL. Promising results were reported by adding arsenic trioxide to zidovudine and IFN. RESULTS: Here we assessed Th1/Th2/T(reg) cytokine gene expression profiles in 16 ATL patients before and 30 days after treatment with arsenic/IFN/zidovudine, in comparison with HTLV-I healthy carriers and sero-negative blood donors. ATL patients at diagnosis displayed a T(reg)/Th2 cytokine profile with significantly elevated transcript levels of Foxp3, interleukin-10 (IL-10), and IL-4 and had a reduced Th1 profile evidenced by decreased transcript levels of interferon-γ (IFN-γ) and IL-2. Most patients (15/16) responded, with CD4(+)CD25(+) cells significantly decreasing after therapy, paralleled by decreases in Foxp3 transcript. Importantly, arsenic/IFN/zidovudine therapy sharply diminished IL-10 transcript and serum levels concomittant with decrease in IL-4 and increases in IFN-γ and IL-2 mRNA, whether or not values were adjusted to the percentage of CD4(+)CD25(+) cells. Finally, IL-10 transcript level negatively correlated with clinical response at Day 30. CONCLUSIONS: The observed shift from a T(reg)/Th2 phenotype before treatment toward a Th1 phenotype after treatment with arsenic/IFN/zidovudine may play an important role in restoring an immuno-competent micro-environment, which enhances the eradication of ATL cells and the prevention of opportunistic infections

    Fucoidan and Alginate from the Brown Algae <i>Colpomenia sinuosa</i> and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer

    No full text
    Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL−1) lower than that of alginate (690 µg/mL−1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C

    The Lebanese Red Algae Jania rubens: Promising Biomolecules against Colon Cancer Cells

    No full text
    International audienceColorectal cancer (CRC) is ranked the second most lethal type of tumor globally. Thus, developing novel anti-cancer therapeutics that are less aggressive and more potent is needed. Recently, natural bioactive molecules are gaining interest as complementary and supportive antineoplastic treatments due to their safety, effectiveness, and low cost. Jania rubens (J. rubens) is a red coral seaweed abundant in the Mediterranean and bears a significant pharmacological essence. Despite its therapeutic potential, the natural biomolecules extracted from this alga are poorly identified. In this study, the proximal analysis revealed high levels of total ash content (66%), 11.3% proteins, 14.5% carbohydrates, and only 4.5% lipids. The elemental identification showed magnesium and calcium were high among its macro minerals, (24 ± 0.5 mg/g) and (33 ± 0.5 mg/g), respectively. The Chlorophyll of J. rubens was dominated by other pigments with (0.82 ± 0.02 mg/g). A 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay identified effective antioxidant activity in various J. rubens extracts. More importantly, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium reduction and wound healing assays indicate that organic extracts from J. rubens significantly counteract the proliferation of colon cancer cell lines (HCT-116 and HT-29) and inhibit their migratory and metastatic properties in a dose and time-dependent manner. Overall, this study provides insight into the physicochemical properties of red seaweed, J. rubens, and identifies its significant antioxidant, cytotoxic, and anti-migratory potential on two colorectal cell lines, HCT-116 and HT-29

    The Cytotoxic and Apoptotic Effects of the Brown Algae Colpomenia sinuosa are Mediated by the Generation of Reactive Oxygen Species

    No full text
    Brown algae are a novel resource of biogenic molecules, however few studies have been conducted in the Mediterranean to assess the cytotoxic mechanisms of algal-derived compounds. This study focuses on the antineoplastic activity of extracts from non-investigated algae of the Lebanese coast, Colpomenia sinuosa. Extracts&rsquo; antineoplastic activities were evaluated by MTT and trypan blue on different tumorigenic cells. Results indicated that the most potent extract was obtained by soxhlet using dichloromethane:methanol solvent (DM soxhlet) against HCT-116. Wound healing assay confirmed that this extract decreased the migration potential of HCT-116 cells with minimal effects on non-tumorigenic cells. It also induced an increase in the subG1 population as determined by flow cytometry. Western blot analysis demonstrated that apoptosis in treated HCT-116 cells was induced via upregulation of p21 protein and downregulation of the anti-apoptotic Bcl 2, which led to caspases activation. The latter, catalyzes the degradation of PARP-1, and thus suppresses cancer proliferation. Morphological alterations, further confirmed apoptosis. A strong pro-oxidant activity evidenced by the enhanced generation of reactive oxygen species (ROS) was observed in HCT-116 treated cells. Interestingly, a strong antioxidant effectively blocked effect induced by the extract. These results indicate that C. sinuosa is a source of bioactive compounds possessing pro-apoptotic and anti-migratory efficacy

    Isolation of Bioactive Compounds from Calicotome villosa Stems

    Get PDF
    A phenylethanoid, two steroids, a flavone glucoside and a chalcone have been isolated for the first time from the stems of Calicotome villosa together with a previously isolated flavone glucoside. Their structures were determined by spectroscopic analyses (NMR, HRMS) as basalethanoïd B (1), β-sitosterol and stigmasterol (2), chrysine-7-O-β-d-glucopyranoside (3), chrysine 7-((6′′-O-acetyl)-O-β-d-glucopyranoside) (4) and calythropsin (5). The crude extracts and the isolated compounds (except 4), were evaluated for their antioxidant, antimicrobial (against two Gram-positive bacterial strains: Staphylococcus aureus, Bacillus cereus, four Gram-negative bacterial strains: Staphylococcus epidermidis, Klebsiella pneumonia, Acinetobacter baumanii, and three yeasts: Candida albicans, Candida tropicalis, and Candida glabrata), hemolytic, antidiabetic, anti-inflammatory and cytotoxic activity. The crude extracts showed good ability to scavenge the free radical DPPH. Methanol stem extract followed by the dichloromethane stem extract showed moderate antimicrobial potency; furthermore, at 1 mg/mL the methanol extract showed an inhibition of C. albicans growth comparable to nystatin. Dichloromethane, methanol, and aqueous extracts inhibited 98%, 90%, and 80% of HeLa cell proliferation at 2 mg/mL respectively. Weak hypoglycemic and hemolytic effects were exhibited by the crude extracts. Among all the tested compounds, compound 3 showed remarkable hypoglycemic potential (93% at 0.1 mg/mL) followed by compound 5 (90% at 0.3 mg/mL). Compound 5 was the most effective in the DPPH. scavenging assay (100% at 0.1 mg/mL) and cytotoxic assay on HeLa cells (99% and 90% after 24 and 48 h of treatment at 0.1 mg/mL, respectively). No anti-inflammatory effects were displayed by any of the crude extracts or the isolated compounds at any of the tested concentrations

    The HTLV-1 oncoprotein Tax is modified by the ubiquitin related modifier 1 (Urm1)

    No full text
    Background: Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy secondary to chronic human T-cell lymphotropic virus 1 infection, triggered by the virally encoded oncoprotein Tax. The transforming activity and subcellular localization of Tax is strongly influenced by posttranslational modifications, among which ubiquitylation and SUMOylation have been identified as key regulators of the nuclear/cytoplasmic shuttling of Tax, as well as its ability to activate NF-κB signaling. Results: Adding to the complex posttranslational modification landscape of Tax, we here demonstrate that Tax also interacts with the ubiquitin-related modifier 1 (Urm1). Conjugation of Urm1 to Tax results in a redistribution of Tax to the cytoplasm and major increase in the transcription of the NF-ĸB targets Rantes and interleukin-6. Utilizing a tax-transgenic Drosophila model, we show that the Urm1-dependent subcellular targeting of Tax is evolutionary conserved, and that the presence of Urm1 is strongly correlated with the transcriptional output of Diptericin, an antimicrobial peptide and established downstream target of NF-κB in flies. Conclusions: These data put forward Urm1 as a novel Tax modifier that modulates its oncogenic activity and hence represents a potential novel target for developing new strategies for treating ATL.Originally included in thesis in manuscript form.</p

    Animal models on HTLV-1 and related viruses: what did we learn?

    No full text
    Oncoviridae regroup several related retroviruses such as Human T-cell lymphotropic viruses (HTLV), Simian T cell lymphotropic viruses (STLV), and Bovine leukemia virus (BLV). Here we present an overview on different animal models used in the study of these viruses. These models vary from naturally infected animals to established, engineered or xenograft models. A special attention will be given to the HTLV-1 virus, the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of inflammatory diseases such as the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Monkeys, rabbits and rats provide an excellent in vivo tool for the study of early viral infection and transmission as well as the antiviral host immune response. However, because of their small size and the availability of reagents, mice remain the most efficient method of studying human afflictions. Murine models regroup genetically altered mice including both transgenic and knock-out mice, as well as immunodeficient mice strains. The first group offers important models to test the role of specific viral and host genes in the development of HTLV-I associated leukemia whereas the second group provides a useful and rapid tool of humanized and xenografted mice models. These later are widely used to test new drugs and targeted therapy against HTLV-1 associated leukemia, to identify potential leukemia stem cells, and to study the innate immunity against the virus. Altogether, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases.
    corecore