25 research outputs found

    Topological 2-Dimensional Quantum Mechanics

    Full text link
    We define a Chern- Simons Lagrangian for a system of planar particles topologically interacting at a distance. The anyon model appears as a particular case where all the particles are identical. We propose exact N-body eigenstates, set up a perturbative algorithm, discuss the case where some particles are fixed on a lattice, and also consider curved manifolds. PACS numbers: 05.30.-d, 11.10.-zComment: 18 pages, Orsay Report IPNO/TH 92-10

    Fractional dimensional Fock space and Haldane's exclusion statistics. q/p case

    Full text link
    The discussion of Fractional dimensional Hilbert spaces in the context of Haldane exclusion statistics is extended from the case \cite{IG} of g=1/pg=1/p for the statistical parameter to the case of rational g=q/pg=q/p with q,pq,p-coprime positive integers. The corresponding statistical mechanics for a gas of such particles is constructed. This procedure is used to define the statistical mechanics for particles with irrational gg. Applications to strongly correlated systems such as the Hubbard and t−Jt-J models are discussed.Comment: 11 pages, latex, no figure

    Many-body States and Operator Algebra for Exclusion Statistics

    Full text link
    We discuss many-body states and the algebra of creation and annihilation operators for particles obeying exclusion statistics.Comment: 14 pages, plainTex. The first few pages have been modified. Note and references added. (This version will appear in Nucl. Phys. B.

    A remark on interacting anyons in magnetic field

    Full text link
    In this remark, we note that the anyons, interacting with each other through pairwise potential in external magnetic field, exhibit a simple quantum group symmetry.Comment: IPT-EPFL preprint, typos fixed, minor corrections, references updated, submitted to Physics Letter A

    Nanoscale Phenomenology from Visualizing Pair Formation Experiment

    Full text link
    Recently, Gomes et al. [1] have visualized the gap formation in nanoscale regions (NRs) above the critical temperature T_c in the high-T_c superconductor Bi_2Sr_2CaCu_2O_{8+\delta}. It has been found that, as the temperature lowers, the NRs expand in the bulk superconducting state consisted of inhomogeneities. The fact that the size of the inhomogeneity [2] is close to the minimal size of the NR [1] leads to a conclusion that the superconducting phase is a result of these overlapped NRs. In the present paper we perform the charge and percolation regime analysis of NRs and show that at the first critical doping x_{c1}, when the superconductivity starts on, each NR carries the positive electric charge one in units of electron charge, thus we attribute the NR to a single hole boson, and the percolation lines connecting these bosons emerge. At the second critical doping x_{c2}, when the superconductivity disappears, our analysis demonstrates that the charge of each NR equals two. The origin of x_{c2} can be understood by introducing additional normal phase hole fermions in NRs, whose concentration appearing above x_{c1} increases smoothly with the doping and breaks the percolation lines of bosons at x_{c2}. The last one results in disappearing the bulk bosonic property of the pseudogap (PG) region, which explains the upper bound for existence of vortices in Nernst effect [3]. Since [1] has demonstrated the absence of NRs at the PG boundary one can conclude that along this boundary, as well as in x_{c2}, all bosons disappear.Comment: 4 pages, 1 figure. Good quality figure one can find in published journal paper. Added 4 new references. Section of arXiv: 1010.043

    Collective Field Formulation of the Multispecies Calogero Model and its Duality Symmetries

    Get PDF
    We study the collective field formulation of a restricted form of the multispecies Calogero model, in which the three-body interactions are set to zero. We show that the resulting collective field theory is invariant under certain duality transformations, which interchange, among other things, particles and antiparticles, and thus generalize the well-known strong-weak coupling duality symmetry of the ordinary Calogero model. We identify all these dualities, which form an Abelian group, and study their consequences. We also study the ground state and small fluctuations around it in detail, starting with the two-species model, and then generalizing to an arbitrary number of species.Comment: latex, 53 pages, no figures;v2-minor changes (a paragraph added following eq. (61)

    Exclusion statistics,operator algebras and Fock space representations

    Full text link
    We study exclusion statistics within the second quantized approach. We consider operator algebras with positive definite Fock space and restrict them in a such a way that certain state vectors in Fock space are forbidden ab initio.We describe three characteristic examples of such exclusion, namely exclusion on the base space which is characterized by states with specific constraint on quantum numbers belonging to base space M (e.g. Calogero-Sutherland type of exclusion statistics), exclusion in the single-oscillator Fock space, where some states in single oscillator Fock space are forbidden (e.g. the Gentile realization of exclusion statistics) and a combination of these two exclusions (e.g. Green's realization of para-Fermi statistics). For these types of exclusions we discuss extended Haldane statistics parameters g, recently introduced by two of us in Mod.Phys.Lett.A 11, 3081 (1996), and associated counting rules. Within these three types of exclusions in Fock space the original Haldane exclusion statistics cannot be realized.Comment: Latex,31 pages,no figures,to appear in J.Phys.A : Math.Ge

    Approximate formula for the ground state energy of anyons in 2D parabolic well

    Full text link
    We determine approximate formula for the ground state energy of anyons in 2D parabolic well which is valid for the arbitrary anyonic factor \nu and number of particles N in the system. We assume that centre of mass motion energy is not excluded from the energy of the system. Formula for ground state energy calculated by variational principle contains logarithmic divergence at small distances between two anyons which is regularized by cut-off parameter. By equating this variational formula to the analogous formula of Wu near bosonic limit (\nu ~ 0)we determine the value of the cut-off and thus derive the approximate formula for the ground state energy for the any \nu and N. We checked this formula at \nu=1, when anyons become fermions, for the systems containing two to thirty particles. We find that our approximate formula has an accuracy within 6%. It turns out, at the big number N limit the ground state energy has square root dependence on factor \nu.Comment: 7 page

    Haldane exclusion statistics and second virial coefficient

    Full text link
    We show that Haldanes new definition of statistics, when generalised to infinite dimensional Hilbert spaces, is equal to the high temperature limit of the second virial coefficient. We thus show that this exclusion statistics parameter, g , of anyons is non-trivial and is completely determined by its exchange statistics parameter α\alpha. We also compute g for quasiparticles in the Luttinger model and show that it is equal to α\alpha.Comment: 11 pages, REVTEX 3.
    corecore