30 research outputs found

    Novelty in three-finger toxin evolution

    Get PDF

    Catch a tiger snake by its tail: Differential toxicity, co-factor dependence and antivenom efficacy in a procoagulant clade of Australian venomous snakes

    Get PDF
    A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This study examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels of cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology

    Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms

    Get PDF
    While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds

    Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis ) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies

    Get PDF
    Saw-scaled vipers (genus Echis) are one of the leading causes of snakebite morbidity and mortality in parts of Sub-Saharan Africa, the Middle East, and vast regions of Asia, constituting a public health burden exceeding that of almost any other snake genus globally. Venom-induced consumption coagulopathy, owing to the action of potent procoagulant toxins, is one of the most relevant clinical manifestations of envenomings by Echis spp. Clinical experience and prior studies examining a limited range of venoms and restricted antivenoms have demonstrated for some antivenoms an extreme lack of antivenom cross-reactivity between different species of this genus, sometimes resulting in catastrophic treatment failure. This study undertook the most comprehensive testing of Echis venom effects upon the coagulation of human plasma, and also the broadest examination of antivenom potency and cross-reactivity, to-date. 10 Echis species/populations and four antivenoms (two African, two Asian) were studied. The results indicate that the venoms are, in general, potently procoagulant but that the relative dependence on calcium or phospholipid cofactors is highly variable. Additionally, three out of the four antivenoms tested demonstrated only a very narrow taxonomic range of effectiveness in preventing coagulopathy, with only the SAIMR antivenom displaying significant levels of cross-reactivity. These results were in conflict with previous studies using prolonged preincubation of antivenom with venom to suggest effective cross-reactivity levels for the ICP Echi-Tab antivenom. These findings both inform upon potential clinical effects of envenomation in humans and highlight the extreme limitations of available treatment. It is hoped that this will spur efforts into the development of antivenoms with more comprehensive coverage for bites not only from wild snakes but also from specimens widely kept in zoological collections

    Proteomic and functional variation within black snake venoms (Elapidae: Pseudechis )

    Get PDF
    Pseudechis (black snakes) is an Australasian elapid snake genus that inhabits much of mainland Australia, with two representatives confined to Papua New Guinea. The present study is the first to analyse the venom of all 9 described Pseudechis species (plus one undescribed species) to investigate the evolution of venom composition and functional activity. Proteomic results demonstrated that the typical Pseudechis venom profile is dominated by phospholipase A2 toxins. Strong cytotoxicity was the dominant function for most species. P. porphyriacus, the most basal member of the genus, also exhibited the most divergent venom composition, being the only species with appreciable amounts of procoagulant toxins. The relatively high presence of factor Xa recovered in P. porphyriacus venom may be related to a predominantly amphibian diet. Results of this study provide important insights to guide future ecological and toxinological investigations

    A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera: Pompilidae)

    No full text
    Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field

    A Short Review of the Venoms and Toxins of Spider Wasps (Hymenoptera: Pompilidae)

    No full text
    Parasitoid wasps represent the plurality of venomous animals, but have received extremely little research in proportion to this taxonomic diversity. The lion’s share of investigation into insect venoms has focused on eusocial hymenopterans, but even this small sampling shows great promise for the development of new active substances. The family Pompilidae is known as the spider wasps because of their reproductive habits which include hunting for spiders, delivering a paralyzing sting, and entombing them in burrows with one of the wasp’s eggs to serve as food for the developing larva. The largest members of this family, especially the tarantula hawks of the genus Pepsis, have attained notoriety for their large size, dramatic coloration, long-term paralysis of their prey, and incredibly painful defensive stings. In this paper we review the existing research regarding the composition and function of pompilid venoms, discuss parallels from other venom literatures, identify possible avenues for the adaptation of pompilid toxins towards human purposes, and future directions of inquiry for the field

    Ancient Diversification of Three-Finger Toxins in Micrurus Coral Snakes

    No full text
    Coral snakes, most notably the genus Micrurus, are the only terrestrial elapid snakes in the Americas. Elapid venoms are generally known for their potent neurotoxicity which is usually caused by Three-Finger Toxin (3FTx) proteins. These toxins can have a wide array of functions that have been characterized from the venom of other elapids. We examined publicly available sequences from Micrurus 3FTx to show that they belong to 8 monophyletic clades that diverged as deep in the 3FTx phylogenetic tree as the other clades with characterized functions. Functional residues from previously characterized clades of 3FTx are not well conserved in most of the Micrurus toxin clades. We also analyzed the patterns of selection on these toxins and find that they have been diversifying at different rates, with some having undergone extreme diversifying selection. This suggests that Micrurus 3FTx may contain a previously underappreciated functional diversity that has implications for the clinical outcomes of bite victims, the evolution and ecology of the genus, as well as the potential for biodiscovery efforts focusing on these toxins

    Scratching the surface of an itch: molecular evolution of Aculeata venom allergens

    No full text
    Hymenopteran insects are infamous for their sting, and their ability to cause severe anaphylaxis and in some cases death. This allergic reaction is a result of allergens present in the venom. Hymenopterans have many common venom allergens, the most widespread of which include phospholipase A, phospholipase A, acid phosphatase, hyaluronidase, serine protease and antigen 5. While there have been studies that look at the phylogenetic histories of allergens within closely related species, to our knowledge, this is the first study using evolutionary analyses to compare across Hymenoptera the types of selection that are occurring on allergens. This research examined the publicly available sequences of six different groups of allergens and found that allergens had diverged and formed closely related clades which share greater sequence similarities. We also analysed the patterns of selection and found that they are predominately under the influence of negative selection

    The sweet side of venom: glycosylated prothrombin activating metalloproteases from Dispholidus typus (boomslang) and Thelotornis mossambicanus (twig snake)

    No full text
    Dispholidus typus and Thelotornis mossambicanus are closely related rear-fanged colubrid snakes that both possess strongly procoagulant venoms. However, despite similarities in overall venom biochemistry and resulting clinical manifestations, the underlying venom composition differs significantly between the two species. As a result, the only available antivenom—which is a monovalent antivenom for D. typus—has minimal cross reactivity with T. mossambicanus and is not a clinically viable option. It was hypothesised that this lack of cross reactivity is due to the additional large metalloprotease protein within T. mossambicanus venom, which may also be responsible for faster coagulation times. In this study, we found that T. mossambicanus venom is a more powerful activator of prothrombin than that of D. typus and that the SVMP transcripts from T. mossambicanus form a clade with those from D. typus. The sequences from D. typus and T. mossambicanus were highly similar in length, with the calculated molecular weights of the T. mossambicanus transcripts being significantly less than the molecular weights of some isoforms on the 1D SDS-PAGE gels. Analyses utilising degylcosylating enzymes revealed that T. mossambicanus SVMPs are glycosylated during post-translational modification, but that this does not lead to the different molecular weight bands observed in 1D SDS-PAGE gels. However, differences in glycosylation patterns may still explain some of the difference between the enzymatic activities and neutralization by antivenom that have been observed in these venoms. The results of this study provide new information regarding the treatment options for patients envenomated by T. mossambicanus as well as the evolution of these dangerous snakes
    corecore