9,493 research outputs found

    How classical are TeV-scale black holes?

    Get PDF
    We show that the Hawking temperature and the entropy of black holes are subject to corrections from two sources: the generalized uncertainty principle and thermal fluctuations. Both effects increase the temperature and decrease the entropy, resulting in faster decay and ``less classical'' black holes. We discuss the implications of these results for TeV-scale black holes that are expected to be produced at future colliders.Comment: 10 pages, no figures, REVTeX style. Extra comments and references to match version accepted to Classical and Quantum Gravit

    Diffusion of charm and beauty in the Glasma

    Full text link
    Relativistic nuclear collisions offer a unique way to study strong interactions at very high energy. The collision process can be described within the gluon saturation framework as the interaction of two colored glasses, and because of this interaction strong longitudinal gluon fields, namely the Glasma, are produced immediately after the collision. Besides, heavy quarks are also produced in the very early stage and because of their large mass and small concentration, their motion does not affect the evolution of the Glasma, thus behaving as ideal probes of the Glasma itself. We study the evolution of the heavy quarks in the Glasma allegedly produced in high energy p-Pb collisions by solving consistently the equations of motion of the quarks in the evolving Glasma fields. We find that this motion can be understood in terms of diffusion in momentum space, similarly to the random motion of a heavy probe in a hot thermalized medium. We show how the diffusion of heavy probes affects the nuclear modification factor of D and B mesons in p-Pb collisions.Comment: Talk given by M. R. at QCD@Work2018 held in Matera, Italy, 25-28 June 201

    Aging and Crossovers in Phase-Separating Fluid Mixtures

    Full text link
    We use state-of-the-art molecular dynamics simulations to study hydrodynamic effects on aging during kinetics of phase separation in a fluid mixture. The domain growth law shows a crossover from a diffusive regime to a viscous hydrodynamic regime. There is a corresponding crossover in the autocorrelation function from a power-law behavior to an exponential decay. While the former is consistent with theories for diffusive domain growth, the latter results as a consequence of faster advective transport in fluids for which an analytical justification has been provided.Comment: 6 pages, 4 figure

    A model for fermion masses and lepton mixing in SO(10) x A4

    Get PDF
    The discrete flavor symmetry A4 explains very well neutrino data at low energy, but it seems difficult to extend it to grand unified models since in general left-handed and right-handed fields belong to different A4 representations. Recently it has been proposed a model where all the fermions equally transform under A4. We study here a concrete SO(10) realization of such a model providing small neutrino masses through the seesaw mechanism. We fit at tree level the charged fermion masses run up to the unification scale. Some fermion masses properties come from the SO(10) symmetry while lepton mixing angles are consequence of the A4 properties. Moreover, our model predicts the absolute value of the neutrino masses, these ones are in the range mν≃0.005−0.052eVm_\nu\simeq 0.005-0.052 eV.Comment: 15 pages. V2: Final version to appear in the journa
    • …
    corecore