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How classical are TeV-scale black holes?
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We show that the Hawking temperature and the entropy of black holes are subject to corrections
from two sources: the generalized uncertainty principle and thermal fluctuations. Both effects
increase the temperature and decrease the entropy, resulting in faster decay and “less classical”
black holes. We discuss the implications of these results for TeV-scale black holes that are expected
to be produced at future colliders.

I. INTRODUCTION

The possibility of the existence of large extra dimensions has recently opened up new and exciting avenues of
research in quantum gravity [1, 2]. In particular, a host of interesting work is being done on different aspects of
low-energy scale quantum gravity phenomenology. One of the most significant sub-fields is the study of black hole
(BH) [3] and brane [4] production at particle colliders, such as the (Very) Large Hadron Collider [V(LHC)] [5] and the
muon collider [6], as well as in ultrahigh energy cosmic ray (UHECR) airshowers [7]. (For recent reviews, see Refs. [8].)
Several scenarios predict the fundamental Planck scale to be of order of the TeV. The simplest model postulates a
number n of toroidally compactified extra dimensions with length ranging from a few microns (n = 2) to a Fermi
(n = 7) [1]. Extra dimensions of infinite size and non-trivial “warp-factor” may also lead to similar predictions [2].
In either case, particle collisions with center-of-mass (c.m.) energy above the fundamental Planck scale, and impact
parameter smaller than the horizon radius corresponding to that energy, should produce BHs and branes [9]. (For
criticisms, however, see Refs. [10].) Since the c.m. energy of next-generation particle colliders and UHECR primaries
is as high as tens or hundreds of TeV, BH and brane production is likely to be observed. For this kind of event, the
initial mass of the gravitational object is expected to be of the order of a few Planck masses.

Newly formed BHs first lose hair associated with multipole and angular momenta, then approach classically stable
Schwarzschild solutions, and finally evaporate via Hawking radiation [11]. Decay time and entropy completely de-
termine the observables of the process. BH formation and decay can be described semiclassically, provided that the
entropy is sufficiently large. The timescale for the complete decay of a BH to up to its supposed final Planck-sized
remnant is expected to be of order of the TeV−1.

BH thermodynamic quantities depend on the Hawking temperature TH via the usual thermodynamic relations
(Stefan-Boltzmann law). The Hawking temperature undergoes corrections from many sources, and these corrections
are particularly relevant for BHs with mass of the order of the Planck mass. Therefore, the study of TeV-scale
BHs in UHECR and particle colliders requires a careful investigation of how temperature corrections affect BH
thermodynamics. In this article, we concentrate on the corrections due to the generalized uncertainty principle (GUP)
and thermal fluctuations of thermodynamic systems. These corrections are not tied down to any specific model of
quantum gravity; the GUP can be derived using arguments from string theory [12] as well as other approaches to
quantum gravity [13, 14]. Similarly, corrections from thermal effects do not depend on the underlying quantum gravity
theory since thermal fluctuations are present in any system. This generality provides in fact a strong motivation in
studying GUP and thermal fluctuation effects.

We show below that the BH decay rate is increased by GUP and thermal fluctuation corrections, resulting in shorter
decay times. Thus the BHs may not behave like well-defined resonances. We also show that a diminished entropy
leads to smaller particle emission during the evaporation phase and “less classical” BHs. The paper is organised
as follows. In the next section, we review the connection between the uncertainty principle and Hawking radiation
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[15, 16]. In section III, we derive corrections to the Hawking decay rate, entropy, and multiplicity due to the GUP. We
show that for BHs with mass M = 5 - 10MPl, the decay time and the entropy (or multiplicity) dramatically decrease
if the GUP parameter is nonvanishing. In section IV we review the corrections to thermodynamic quantities due to
thermal fluctuations. We apply these results to BHs in section V, where we show that BH decay time and entropy
also decrease compared to their semiclassical value. We conclude with a summary of our results and a brief discussion
of open questions in section VI.

II. UNCERTAINTY PRINCIPLE AND HAWKING RADIATION

In this section we review and generalize to d dimensions the derivation of the Hawking radiation of Adler et al. [15].
A d-dimensional spherically symmetric BH of mass M (to which the collider BHs will settle into before radiating) is
described by the metric

ds2 = −
(

1 − 16πGdM

(d − 2)Ωd−2c2rd−3

)

c2dt2 +

(

1 − 16πGdM

(d − 2)Ωd−2c2rd−3

)−1

dr2 + r2dΩ2
d−2 , (1)

where Ωd−2 is the metric of the unit Sd−2 and Gd is the d-dimensional Newton’s constant. Since the Hawking radiation
is a quantum process, the emitted quanta must satisfy the Heisenberg uncertainty principle

∆xi∆pj >∼ h̄δij , (2)

where xi and pj , i, j = 1 . . . d − 1, are the spatial coordinates and momenta, respectively. By modelling a BH as a
(d−1)-dimensional cube of size equal to twice its Schwarzschild radius rs, the uncertainty in the position of a Hawking
particle at the emission is

∆x ≈ 2rs = 2λd

[

GdM

c2

]1/(d−3)

, (3)

where λd = [16π/((d − 2)Ωd−2)]
1/(d−3). Using Eq. (2), the uncertainty in the energy of the emitted particle is

∆E ≈ c∆p ≈ MPlc
2

2λd
m−1/(d−3) , (4)

where m = M/MPl is the mass in Planck units and MPl = [h̄d−3/cd−5Gd]
1/(d−2) is the d-dimensional Planck mass.

∆E can be identified with the characteristic temperature of the BH emission, i.e. the Hawking temperature. Setting
the constant of proportionality to (d − 3)/2π we get

TH =
d − 3

4πλd
MPlc

2 m−1/(d−3) . (5)

The energy radiated per unit time is governed by the Stefan-Boltzmann law. The surface gravity is constant over
the horizon. Thus the Hawking temperature of the higher-dimensional BH and the temperature of the induced BH
on the brane are identical. The BH temperature TH can be used in the calculation of the emission rate. Neglecting
thermal emission in the bulk, and assuming that the brane has D spacetime dimensions (we will substitute D = 4 at
the end, since BHs are supposed to radiate mainly on the brane [11]), the emission rate for a massless scalar particle
on the brane is

dM

dt
= −cσDADTD , (6)

where AD = ΩD−2r
D−2
c is the horizon area of the induced BH with radius rc = [(d−1)/2]1/(d−3)[(d−1)/(d−3)]1/2rs,

and

σD =
ΩD−3Γ(D)ζ(D)

(D − 2)(2πh̄c)D−1
≡ σ̄D

(h̄c)D−1
(7)

is the Stefan-Boltzmann constant in D-spacetime dimensions. If the BH evaporates into different particle species on
the brane, the Stefan-Boltzmann constant has to be multiplied by the factor

∑

i

ci(D)Γsi
(D)fi(D) , (8)



3

where the sum is over all particle flavors, ci are the degrees of freedom of the species i, Γsi
are the greybody factors

for spin si and fi = 1 (fi = 1 − 21−D) for bosons (fermions). (We neglect the energy dependence of the greybody
factors. See, e.g., Refs. [11].) Expressing Eq. (6) in terms of m, we obtain

dm

dt
= − µ

tPl
m−2/(d−3) , (9)

where tPl = (h̄Gd/cd+1)1/(d−2) is the Planck time, and

µ =

(

rc

rs

)D−2(
d − 3

4π

)D
σ̄DΩD−2

λ2
d

. (10)

Integration over t yields the decay time

τ0 = µ−1

(

d − 3

d − 1

)

m
(d−1)/(d−3)
i tPl , (11)

where mi ≡ Mi/MPl, and Mi is the initial BH mass. The decay time τ0 is finite. Equation (9) implies that the
end stage of Hawking evaporation is catastrophic, with infinite radiation rate and infinite temperature. However, a
heuristic argument suggests that the final temperature and radiation rate are finite. At the last stage of evaporation,
∆E in Eq. (4) must be of the order of the BH mass, and ∆E = ∆Mc2 ≈ Mendc

2. This implies a minimum BH mass
Mend ≈ MPl, a maximum Hawking temperature Tmax = O(MPl), and a smaller decay time.

The thermodynamic properties of the BH can be computed via the usual thermodynamic relations. The entropy
and the BH specific heat are

S0 =
4πλd

d − 2
m(d−2)/(d−3) =

d − 3

d − 2

Mc2

TH
, (12)

and

C0 = −4πλdm
(d−2)/(d−3) , (13)

respectively. The statistical total number of quanta emitted during the evaporation is proportional to the initial
entropy of the BH. The exact relation is

N = S0
ζ(D − 1)

(D − 1)ζ(D)

∑

i ci(D)Γsi
(D)fi(D − 1)

∑

j cj(D)Γsj
(D)fj(D)

. (14)

The flavor multiplicity is

Ni = N
ci(D)Γsi

(D)fi(D − 1)
∑

j cj(D)Γsj
(D)fj(D − 1)

. (15)

Equation (15) gives the statistical number of particles per species produced during the evaporation process.

III. CORRECTIONS TO BH THERMODYNAMICS FROM THE GENERALIZED UNCERTAINTY

PRINCIPLE

We now determine the corrections to the above results due to the GUP. The general form of the GUP is

∆xi ≥
h̄

∆pi
+ α2ℓ2

Pl

∆pi

h̄
, (16)

where ℓPl = (h̄Gd/c3)1/(d−2) is the Planck length and α is a dimensionless constant of order one. There are many
derivations of the GUP, some heuristic and some more rigorous. Equation (16) can be derived in the context of string
theory [12], non-commutative quantum mechanics [13], and from minimum length [17] considerations [14]. The exact
value of α depends on the specific model. The second term in r.h.s. of Eq. (16) becomes effective when momentum
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and length scales are of the order of Planck mass and of the Planck length, respectively. This limit is usually called
“quantum regime”. Inverting Eq. (16), we obtain

∆xi

2α2ℓ2
Pl

[

1 −
√

1 − 4α2ℓ2
Pl

∆x2
i

]

≤ ∆pi

h̄
≤ ∆xi

2α2ℓ2
Pl

[

1 +

√

1 − 4α2ℓ2
Pl

∆x2
i

]

. (17)

The left-inequality gives the correct ℓPl/∆xi → 0 limit and will be considered henceforth. The GUP implies the
existence of a minimum length Lmin ≈ ∆x = 2αℓPl. The string regime and the classical regimes are recovered by
setting ∆xi ≈ 2αℓPl and ∆xi ≫ ℓPl in Eq. (16), respectively.

BHs with horizon radius smaller than Lmin do not exist. Therefore, the minimum length implies the existence of
a minimum BH mass

Mmin =
d − 2

8Γ
(

d−1
2

)

(

α
√

π
)d−3

MPl . (18)

The minimum BH mass is a rapidly increasing function of the unknown parameter α for d ≥ 6; a value of α larger
than unity may lead to a minimum BH mass Mmin ≫ MPl.

The corrections to the BH thermodynamic quantities can be calculated by repeating the argument of the previous
section. Setting ∆x = 2rs the GUP-corrected Hawking temperature is

T ′

H =
(d − 3)λd

2πα2
m1/(d−3)

[

1 −
√

1 − α2

λ2
dm

2/(d−3)

]

MPlc
2 . (19)

Equation (19) may be Taylor expanded around α = 0:

T ′

H =
(d − 3)

4πλd
m−1/(d−3)

[

1 +
α2

4λ2
dm

2/(d−3)
+ · · ·

]

MPlc
2 . (20)

The GUP-corrected Hawking temperature is higher than the semiclassical Hawking temperature TH of Eq. (5). The
first-order correction is

∆TGUP ≡ T ′

H − TH =
d − 3

16π

α2

λ3
d m3/(d−3)

MPlc
2 . (21)

From the first law of BH thermodynamics the first-order correction to the BH entropy is

∆SGUP = −πα2m(d−4)/(d−3)

(d − 4)λd
d > 4 ,

= −πα2

2
ln(m) d = 4 . (22)

This follows from the exact expression:

SGUP = 2πλd

(

α

λd

)d−2

I(1, d − 4, λdm
1/(d−3)/α) , (23)

where

I(p, q, x) =

∫ x

1

dzzq
(

z +
√

z2 − 1
)p

. (24)

From Eq. (22) and Eq. (23) it follows that the GUP-corrected entropy is smaller than the semiclassical Bekenstein-
Hawking. The GUP-corrected Stefan-Boltzmann law is

dm

dt
= −2D

µ

tPl
m−2/(d−3)

[

1 +

√

1 − α2

λ2
d m2/(d−3)

]−D

. (25)

Taylor expanding Eq. (25) we have

dm

dt
= − µ

tPlm2/(d−3)

[

1 +
α2D

4λ2
dm

2/(d−3)
+ · · ·

]

. (26)
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The relative GUP first-order correction to the Stefan-Boltzmann law is positive:

∆

(

dm

dt

)

/

(

dm

dt

)

0

=
α2D
4λ2

d

m−2/(d−3) , (27)

where (dm/dt)0 is defined in Eq. (9). The Hawking evaporation ends at mmin = Mmin/MPl = (α/λd)
d−3, where the

emission rate becomes imaginary. The emission rate is finite at the end:

(

dm

dt

)

mmin

= −2D
µ

tPl

(

λd

α

)2

. (28)

This means that the end-point of Hawking radiation is not catastrophic. Since the final emission rate is finite, it might
be argued that once the final stage has been reached, the BH evaporates completely by emitting a hard Planck-mass
quantum in a finite time O(tPl). However, the BH specific heat

C ≡ T
∂S

∂T
= −2πλdm

(d−2)/(d−3)

√

1 − α2

λ2
dm2/(d−3)

·
(

1 +

√

1 − α2

λ2
dm

2/(d−3)

)

(29)

vanishes at the endpoint. Therefore, the BH cannot exchange heat with the surrounding space. The endpoint of
Hawking evaporation in the GUP scenario is characterized by a Planck-size remnant with maximum temperature

Tmax = 2T0

∣

∣

∣

M=Mmin

. (30)

The GUP prevents BHs from evaporating completely, just like the standard uncertainty principle prevents the hydrogen
atom from collapsing. The existence of BH remnants as a consequence of the GUP was pointed in Refs. [15] in the
context of primordial BHs in cosmology [18]. BH remnants have also been predicted in string and quantum gravity
models [19] and could play an important role in cosmology. (See, e.g., Refs. [20].)

The GUP implies a faster BH decay. The first-order decay time is

τ1 = µ−1

(

d − 3

d − 1

)

{

[

m
(d−1)/(d−3)
i − D(d − 1)α2

4(d − 3)λ2
d

mi

]

−
[

1 − D(d − 1)

4(d − 3)

](

α

λd

)d−1
}

tPl . (31)

If the initial mass far exceeds the Planck mass, i.e. mi ≫ 1, the last term inside the curly brackets can be ignored.
Using Eq. (11), we find

∆τ1

τ0
≡ τ1 − τ0

τ0
= −D(d − 1)α2

4(d − 3)λ2
d

m
−2/(d−3)
i . (32)

The GUP-corrected decay time is smaller than the semiclassical decay time. The GUP-corrected multiplicity is
obtained from Eq. (14) with S0 = SGUP . Table I shows the GUP-corrected parameters for two typical BHs produced at
particle colliders or in UHECRs, with initial mass equal to 5MPl and 10MPl. The first row gives the standard Hawking
parameters. The GUP effects on the thermodynamic parameters increase as the minimum BH mass becomes larger. It
is interesting to note that decay time, entropy, and multiplicity are drastically reduced when α approaches unity. In the
limiting case of a BH with initial mass 5MPl and GUP parameter α = 1, the minimum BH mass coincides essentially
with the initial BH mass, and the BH does not evaporate. In contrast to the standard theory, the GUP-corrected
entropy shows that a BH with a mass five times the fundamental Planck scale is not a classical object; quantum effects
become manifest at an earlier stage of the BH evaporation phase than was predicted by the semiclassical Hawking
analysis [8]. Therefore, GUP corrections have important consequences on the BH phenomenology in particle colliders
and in UHECR airshowers.

IV. ENTROPY CORRECTIONS DUE TO THERMODYNAMIC FLUCTUATIONS

Thermodynamic systems (including BHs) undergo small thermal fluctuations from equilibrium which affect ther-
modynamic quantities. In this section we calculate the corrections to entropy and Hawking temperature. We have
seen that the GUP corrections affect the Hawking temperature of the BH while the BH energy remains constant.
Therefore, we consider fluctuations around the equilibrium temperature instead of the equilibrium energy. This leads
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TABLE I: GUP-corrected thermodynamic quantities for two ten-dimensional BHs with mass m = 5 and 10 (in fundamental
units). The values in brackets give the percentage deviation from standard Hawking quantities.

m = 5

Minimum mass Initial Temperature Final Temperature Decay time Entropy Multiplicity

α = 0 – .553 ∞ .334 7.92 3

α = 0.5 .037 .591 (+7%) 2.23 .233 (-30%) 7.18 (-9%) 2 (-33%)

α = 1.0 4.73 .981 (+77%) 1.11 .002 (-99%) .269 (-97%) 0 (-100%)

m = 10

Minimum mass Initial Temperature Final Temperature Decay time Entropy Multiplicity

α = 0 – .500 ∞ .814 17.5 6

α = 0.5 .037 .529 (+6%) 2.23 .610 (-25%) 16.2 (-7%) 5 (-17%)

α = 1.0 4.73 .696 (+39%) 1.11 .100 (-88%) 6.66 (-62%) 2 (-66%)

to a decrease in the black hole entropy. Note that the Bekenstein-Hawking entropy is identified with the canonical
entropy of the system1. Let us consider a canonical ensemble with partition function [22, 23]:

Z(β) =

∫

∞

0

ρ(E)e−βEdE , (33)

where β = 1/T is the inverse of the temperature. The density of states can be obtained from Eq. (33) by the inverse
Laplace transform (at fixed E)

ρ(E) =
1

2πi

∫ c+i∞

c−i∞

Z(β)eβEdβ =
1

2πi

∫ c+i∞

c−i∞

eS(β)dβ , (34)

where

S(β) = lnZ(β) + βE . (35)

To evaluate the complex integral in Eq. (34) by the method of steepest descent, we expand S(β) around the saddle
point β0(= 1/T0), where T0 is the equilibrium temperature. Also using the fact that S′

0 = (∂S(β)/∂β)β=β0
, we get

[22, 24]:

S = S0 +
1

2
(β − β0)

2S′′

0 + · · · , (36)

where S0 = S(β0) and S′′

0 = (∂2S(β)/∂β2)β=β0
. Substituting Eq. (36) in Eq. (34), the density of states is

ρ(E) =
eS0

2πi

∫ c+i∞

c−i∞

e(β−β0)
2S′′

0
/2dβ

=
eS0

√

2πS′′

0

. (37)

The corrected entropy is given by the logarithm of the density of states ρ(E):

S = ln ρ(E) = S0 −
1

2
lnS′′

0 + (higher order terms) . (38)

1 If fluctuations around the equilibrium energy were considered, the Bekenstein-Hawking entropy could be identified with the microcanon-
ical entropy [21].
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From E = −(∂ lnZ(β)/∂β)β0
and the definition of specific heat, C = (∂E/∂T )β0

, S′′(β) can be written as

S′′(β) =
1

Z
(
∂2Z(β)

∂β2
) − 1

Z2
(
∂Z

∂β
)2

= 〈E2〉 − 〈E〉2
= C T 2 . (39)

Equation (39) shows that a non-vanishing S′′
0 is a consequence of thermal fluctuations. Substituting Eq. (39) in

Eq. (38), we obtain

S = ln ρ = S0 −
1

2
ln
(

C T 2
)

+ · · · . (40)

The above formula applies to any thermodynamic system in equilibrium. In particular, when applied to BHs, T is the
Hawking temperature. For example, for a non-rotating three-dimensional BTZ BH, both TH and C are proportional
to the BH entropy S0. In this case, Eq. (40) reads

S = ln ρ = S0 −
3

2
lnS0 + · · · . (41)

Similarly, for an AdS-Schwarzschild BH in d-dimensions, it can be shown that (see Ref. [22])

S = S0 −
d

2(d − 2)
lnS0 + · · · . (42)

Although Eq. (40) is not applicable directly to the Schwarzschild BHs because of its negative specific heat, the entropy
corrections can be shown to be logarithmic by either assuming a small cosmological constant, or by putting the BH
into a finite box. The result is:

SThermo = S0 − k lnS0 , (43)

where k is a positive constant of order unity. We will apply these results to brane world BHs in the next section.

V. CORRECTIONS TO BH DECAY RATE DUE TO THERMODYNAMIC FLUCTUATIONS

The corrected Hawking temperature is obtained from the first law of BH thermodynamics. The result is:

T ′′

H =
(d − 3)

4πλd
m−1/(d−3)

[

1 +
k(d − 2)

4πλd
m−(d−2)/(d−3) + . . .

]

MPlc
2 . (44)

Equation (44) gives the first-order correction to the Hawking temperature

∆TThermo ≡ T ′′

H − TH =
k(d − 2)(d − 3)

16π2λ2
d

m−(d−1)/(d−3) MPlc
2 . (45)

The correction to the BH entropy follows from Eq. (43):

∆SThermo = −k lnS0 . (46)

The multiplicity is also reduced, and is now given by Eq. (14) with S0 → SThermo. Similarly to the GUP corrections,
thermodynamic fluctuations reduce the number of degrees of freedom of the BH. Taking the ratio of Eq. (21) and
Eq. (45), we find

∆TGUP

∆Tthermo
=

[

πα2

λdk(d − 2)

]

m(d−4)/(d−3) . (47)

The GUP and the thermal fluctuation corrections are of the same order for d = 4. In d > 4, the situation is more
complicated. If m ≫ 1, the GUP corrections far exceed the corrections due to thermodynamic fluctuations. However,
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when m ≈ 1, i.e. near the end stage of evaporation, the rates are comparable. The first-order corrected specific heat
is:

C = C0

[

1 − k(d − 1)(d − 2)

4πλd
m−(d−2)/(d−3)

]

, (48)

where C0 is given by Eq.(13). The first-order specific heat vanishes for the non-zero value of m

m0 =

[

k(d − 1)(d − 2)

4πλd

](d−3)/(d−2)

. (49)

This suggests that the BH becomes thermodynamically stable when the BH mass reaches m0. However, this conclusion
should be interpreted with care; the thermodynamic fluctuations of a BH with mass m ∼ m0 are large and the first-
order approximation (43) breaks down. The Stefan-Boltzmann law is obtained from Eq. (44):

dm

dt
= − µ

tPlm2/(d−3)

[

1 +
kD(d − 2)

4πλd
m−(d−2)/(d−3) + . . .

]

. (50)

The first-order correction to the Stefan-Boltzmann law due to thermal fluctuations is positive:

∆

(

dm

dt

)

/

(

dm

dt

)

0

=
kD(d − 2)

4πλd
m−(d−2)/(d−3) . (51)

Integrating Eq. (50) we obtain the expression for the time decay

τ2 = µ−1

(

d − 3

d − 1

)

m
(d−1)/(d−3)
i

[

1 − kD(d − 1)(d − 2)

4πλd
m

−(d−2)/(d−3)
i + . . .

]

tPl . (52)

Similarly to the GUP case, it can be easily verified that the BH takes less time to decay when fluctuation corrections
are taken into account:

∆τ2

τ0
≡ τ2 − τ0

τ0
= −kD(d − 1)(d − 2)

4πλd
m

−(d−2)/(d−3)
i . (53)

The decay time is dramatically reduced by thermal fluctuations. Equation (52) implies a relation between the thermal
fluctuation threshold m0 and the BH initial mass. By imposing τ2 > 0 we have

mi > D(d−3)/(d−2)m0 ≡ m′

0 . (54)

BH with initial mass smaller than m′

0 form in a regime where thermal fluctuations dominate. A careful study of
their thermodynamic properties should include higher-order terms in the expansion (36). Since the thermodynamic
fluctuations prevent the analytical evaluation of the integral in Eq. (37), numerical techniques may have to be used to
get accurate estimates of the thermodynamic quantities. In any case, our analysis shows that semiclassical Hawking
theory is inadequate for the the description of these black holes. Note that for k = 0.5 (1), m′

0 = 10.25 (18.8).
Thermal fluctuations cannot be neglected in particle collider or UHECR BH events.

VI. DISCUSSION

We have examined the effects of the GUP and small thermal fluctuations on temperature, decay rate, and entropy of
microscopic BHs. Although these effects are small under most circumstances, they can be significant in BH production
at the TeV scale, where the BH mass is expected to be of the order of the fundamental Planck mass. The GUP and
the thermal fluctuation corrections increase the BH temperature, and decrease decay time, entropy, and multiplicity
of the evaporation phase: Quantum BHs are hotter, shorter-lived, and tend to evaporate less than classical BHs. The
results described here are applicable to the ADD as well as the RS brane world scenarios [1, 2].

Under the most favorable circumstances, the semiclassical cross section for BH formation at the TeV scale reaches
hundreds of pb for proton-proton collision at the LHC, and millions of pb for neutrino-nucleon collision in the
atmosphere. According to the semiclassical scenario, the Hawking evaporation mechanism will allow detection of
microscopic BHs with mass of the order of a few Planck masses in next-generation particle colliders and UHECR
detectors. However, our results seem to suggest that the semiclassical description could be inaccurate for this kind of
events.
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Firstly, a shorter lifetime implies that the quantum BH may not behave like a well-defined resonance. Secondly, the
classical picture breaks down if the degrees of freedom of the BH, i.e. its entropy, is small. The semiclassical entropy
has been widely used in the literature to measure the validity of the semiclassical approximation. When the entropy is
sufficiently large, the BH can be considered as a classical object [8]. If this is the case, i) the BH evaporation phase is
described by a thermal spectrum with Hawking temperature; ii) the BH cross section for elementary particles is well
approximated by the geometrical cross section; and iii) the total cross section for composite particles (e.g. nucleons)
is obtained by integrating the geometrical cross section over the structure functions. A BH with mass equal to few
Planck masses is usually assumed to have entropy above the threshold of validity of the classical description. However,
the reduction in entropy by GUP and thermal fluctuation effects increases this threshold. Therefore, it may not be
appropriate to treat these BHs as classical objects. (See also Ref. [10]). Thirdly, GUP physics implies the existence of
a minimum BH mass given by Eq. (18). The existence of a minimum mass increases the lower cutoff for BH formation,
thus reducing the rate of BH events. Even if a detectable signal is produced during the BH decay phase, it could prove
very difficult to distinguish it from the background. Finally, GUP and thermodynamic fluctuations further decrease
the already-weak lower bounds on the fundamental Planck scale that follow from the nonobservation of BH events up
to date [25].

Let us conclude with a list of open problems and possible future research topics. It would be interesting to compute
the effects of small residual charge Q and angular momentum J on the above results. In presence of nonzero charge and
angular momentum, the corrections to the thermodynamic quantities are expected to depend on J and Q. However,
the precise form of the corrections is yet to be determined. It would also be interesting to examine the relation of
the GUP and thermodynamic corrections to other corrections that have been predicted for TeV-scale BHs (see e.g.
Refs. [8], [10]). A detailed single-event analysis of particle collider and UHECR events when GUP and thermodynamic
corrections are present, is also missing. We plan to report on these and other issues elsewhere.
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th/0305067; E. Berti, M. Cavaglià and L. Gualtieri, arXiv:hep-th/0309203; V. Cardoso and J. P. S. Lemos, Phys. Rev.
D 67, 084005 (2003) [arXiv:gr-qc/0211094]; V. Cardoso, O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 67, 064026
(2003) [arXiv:hep-th/0212168]; P. C. Aichelburg, H. Balasin and M. Kerber, Class. Quant. Grav. 21, S1 (2004) [arXiv:gr-
qc/0307017]; S. D. H. Hsu, Phys. Lett. B 555, 92 (2003) [arXiv:hep-ph/0203154].

[10] M. B. Voloshin, Phys. Lett. B 524, 376 (2002) [arXiv:hep-ph/0111099]; V. S. Rychkov, arXiv:hep-ph/0401116.
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