120 research outputs found

    The environmental watchdogs: Wildlife as sentinels of antimicrobial resistance pollution in the environment in Catalonia

    Get PDF
    El creciente incremento de resistencias a los antimicrobianos (RAM) tanto en seres humanos como en el ganado se atribuye en gran medida al uso excesivo o incorrecto de estos tratamientos. La alarmante aparición de estas resistencias en la medicina humana y veterinaria ha impulsado el desarrollo de diversos estudios de monitorización de los niveles de contaminación RAM en el medio ambiente. En este documento se describe la aparición de genes de resistencia a los antibióticos de último recurso en medicina humana, en una amplia diversidad de animales salvajes. Se sugiere que la fauna salvaje puede ser un buen centinela de la contaminación ambiental por RAM, especialmente en áreas muy pobladas. Por otro lado, los animales salvajes también pueden contribuir a la propagación de bacterias y genes RAM en el medio ambiente y representar un riesgo zoonótico para las personas que estén en estrecho contacto.; El creixent increment de resistències als antimicrobians (RAM) tant en éssers humans com en el bestiar s’atribueix en gran manera a l’ús excessiu o incorrecte d’aquests tractaments. L’alarmant aparició d’aquestes resistències en la medicina humana i veterinària ha impulsat el desenvolupament de diversos estudis de monitoratge dels nivells de contaminació RAM en el medi ambient. En aquest document es descriu l’aparició de gens de resistència als antibiòtics d’últim recurs en medicina humana, en una àmplia diversitat d’animals salvatges. Se suggereix que la fauna salvatge pot ser un bon sentinella de la contaminació ambiental per RAM, especialment en àrees molt poblades. D’altra banda, els animals salvatges també poden contribuir a la propagació de bacteris i gens RAM en el medi ambient i representar un risc zoonòtic per a les persones que hi estiguen en contacte estret.; The increasing prevalence of antimicrobial resistance (AMR) in both humans and livestock is attributed largely to the overuse and misuse of antimicrobials. The alarming emergence of this resistance in human and veterinary medicine has activated awareness for monitoring the levels of AMR pollution in the environment. In this report, the emergence of genes conferring resistance to human last-resort antibiotics is described in a wide diversity of wild animals. It suggests that wildlife can be good sentinels of AMR environmental pollution, especially in highly populated areas. Moreover, wild animals can also contribute in the dissemination of AMR bacteria and genes in the environment and represent a zoonotic risk for the population who are exposed to them

    Final Disposition and Quality Auditing of the Rehabilitation Process in Wild Raptors admitted to a Wildlife Rehabilitation Centre in Catalonia, Spain , during a Twelve Year Period (1995-2007)

    Get PDF
    Background: Variability in reporting and classification methods in previous published data of the final dispositions in the rehabilitation of wild raptors makes use of this data limited in trying to audit the quality of the rehabilitation process. Crude as well as stratified disposition rates are needed if quality auditing of the rehabilitation process is to be adequately performed. Methodology: Final dispositions of 6221 hospitalized wild raptors admitted at a wildlife rehabilitation centre (WRC) of Catalonia during 1995-2007 were analyzed. These dispositions were calculated as the euthanasia (Er), unassisted mortality (Mr), release (Rr) and captivity rates (Cr)., time to death (Td) for dead and euthanized raptors, and length of stay for released (Tr) raptors was estimated. Stratified analyses by main causes of admission and clinical signs were performed. Results: The disposition for the total population were: Er = 30.6%, Mr = 19.1%, Rr = 47.2%, and Cr = 3%. By main causes of admission, Er was higher in the trauma category (34.2%), whereas Mr was found similar between trauma (37.4%) and non-trauma categories (34.8%). The highest Rr was observed for the orphaned group (77.9%). Furthermore, Cr was low in all the categories (<4%). By clinical signs, the highest Er was found in animals suffering musculoskeletal (37.9%) or skin (32.3%) lesions; Mr was high in infectious/parasitic diseases (66.7%) and in case of neurological symptoms (64.5%). The euthanized birds had a median Td = 1 day (P10 = 0-P90 = 59) for both trauma and non-trauma categories, and Td = 36 days for the orphaned young group (P10 = 0; P90 = 596). The median Td in the unassisted dead birds was 2 days for all the categories (P10 = 0-P90 = 31). Finally, the median Tr in the centre was variable among categories. Conclusions/Significance: Reporting of final dispositions in wildlife rehabilitation should include the crude and stratified rates (Er, Mr, Rr, and Cr), by causes and clinical presentation, as well as Td and Tr, to allow meaningful auditing of the rehabilitation process quality

    Characterization of the attachment and infection by Porcine reproductive and respiratory syndrome virus 1 isolates in bone marrow-derived dendritic cells

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) is known to infect porcine dendritic cells (DC). Previous studies indicated that different PRRSV1 isolates regulated differently the cytokine profiles and expression of surface molecules of DC. However, the characterisation of the infection is lacking. The current study aimed to characterise the replication and attachment of different PRRSV1 isolates in bone marrow-derived DC (BMDC). For this purpose, immature (i) and mature (m) BMDC were infected with three PRRSV1 isolates. The replication kinetics showed that titres in iBMDC were significantly (p < 0.05) higher than in mBMDC by 24 hpi, and for two isolates titres peaked earlier in iBMDC, suggesting that iBMDC were more efficient in supporting PRRSV1 replication than mBMDC. The attachment was revealed by a three-colour confocal microscopy staining. All three isolates were seen attached to iBMDC even in cells lacking CD163 -the essential receptor for PRRSV- or porcine sialoadhesin (PoSn). The attachment was not fully avoided after removal of heparan sulphate by heparinase I. Furthermore, the infection was examined with regards to CD163 expression. By flow cytometry and confocal microscopy, positive signals of PRRSV1 nucleocapsid could be observed in CD163− iBMDC. Additional sorting experiment demonstrated that CD163− iBMDC were infected only when CD163lo/hi cells were present. This can be interpreted in different ways: susceptible CD163− cells arose as result of milieu created by CD163+ infected BMDC; CD163− cells were infected by receptor-independent mechanisms (i.e. exosomes) or, some cells expressed CD163 at levels beyond the technical sensitivity.info:eu-repo/semantics/acceptedVersio

    Prevalence of enteric pathogens in diarrheic and non-diarrheic samples from pig farms with neonatal diarrhea in the North East of Spain

    Get PDF
    Diarrhea is one of the major causes of neonatal mortality in pigs. In the present study, 31 pig farms with outbreaks of neonatal diarrhea were investigated in Catalonia (NE Spain) from February 2017 until June 2018. Two hundred and fifteen diarrheic samples from 1 to 7 days old piglets were tested for a panel of enteric pathogens. In 19 of the studied farms additional fecal samples from apparently healthy pen-mates were collected and tested for the same panel of infectious agents. Samples were bacteriologically cultured and tested by PCR for E. coli virulence factors genes, C. perfringens types A and C toxins (Cpα, Cpβ, Cpβ2) and C. difficile toxins (TcdA, TcdB). Moreover, Rotavirus A (RVA), Rotavirus B (RVB), Rotavirus C (RVC), porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) were also determined by RT-qPCR. More than one pathogen could be detected in all of the outbreaks. Nevertheless, RVA was the only agent that could be statistically correlated with the outcome of diarrhea. For the other viruses and bacteria analyzed significant differences between the diseased pigs and the controls were not found. In spite of this, the individual analysis of each of the studied farms indicated that other agents such as RVB, RVC, toxigenic C. difficile or pathogenic E. coli could play a relevant role in the outbreak of diarrhea. In conclusion, the large diversity of agent combinations and disease situations detected in neonatal diarrhea outbreaks of this study stand for a more personalized diagnosis and management advice at a farm level.info:eu-repo/semantics/acceptedVersio

    Differences in enteric pathogens and intestinal microbiota between diarrheic weaned piglets and healthy penmates

    Get PDF
    Altres ajuts: acords transformatius de la UABPostweaning diarrhea (PWD) is a multifactorial disease caused by different aetiological agents, like viruses or bacteria and where the role of the microbiota remains unclear. The aim of this study was to assess differences between healthy and diarrheic weaned pigs concerning the prevalence of pathogens and changes in the intestinal microbiota. Eighteen farms with PWD were selected and 277 fecal samples were collected (152 diarrheic vs 125 healthy). Presence of Rotavirus A (RVA), B (RVB), C (RVC) and Porcine Epidemic Diarrhea Virus (PEDV), virulence factors of Escherichia coli and Clostridioides difficile were analyzed by PCR. Finally, the microbiota composition was also study by 16 S rRNA sequencing on 148 samples (102 diarrheic vs 46 healthy). RVA (53.95 % vs 36 %, p=0.04) and RVB (49.67 % vs 28.8 %, p<0.001) were more frequent in diarrheic animals. Furthermore, RVA viral load was higher in diseased animals. VT2 toxin was significantly associated with diarrhea, whereas other virulence factors were not. Presence of C. difficile and PEDV was almost negligible. Regarding microbiota changes, Fusobacteriota phylum was more frequent in diarrheic samples and Ruminococcaceae family in healthy penmates. During the first week postweaning, Enterobacteriace and Campylobacteria were enriched in animals presenting diarrhea. Furthermore, Lactobacillus was detected in those individuals with no RVA infection. In conclusion, RVA seems to play a primary role in PWD. Classic E. coli virulence factors were not associated with diarrhea, indicating the need for revising their implication in disease. Moreover, Lactobacillus was found frequently in animals negative for RVA, suggesting some protective effect

    Current Situation of Bacterial Infections and Antimicrobial Resistance Profiles in Pet Rabbits in Spain

    Get PDF
    Rabbits are the second most common specialty pet among households in Europe and the USA. However, research on antimicrobial resistance (AMR) in pet rabbits is very scarce. Therefore, scientific data on AMR in pet rabbits is urgently needed as a guide for veterinarian clinicians to optimize antibiotic use in rabbits for reducing the selection of antibiotic resistance. In addition, antimicrobial stewardship programs should be conducted to educate rabbit owners not to misuse antibiotics on their pets as it may put their own health at risk. This paper aims to provide an overview of the current state of AMR in rabbits attended to in veterinary clinics distributed in Spain to highlight the importance of addressing AMR under the One Health approach. Research on antimicrobial resistance (AMR) in pet rabbits is very scarce. The aim of this study was to provide an overview of the current state of AMR in rabbits attended to in veterinary clinics distributed in Spain. Records of 3596 microbiological results of clinical cases submitted from 2010 to 2021 were analyzed. Staphylococcus spp. (15.8%), Pseudomonas spp. (12.7%), Pasteurella spp. (10%), Bordetella spp. (9.6%) and Streptococcus spp. (6.8%) were the most frequently diagnosed agents. Enterobacteriaceae, principally Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae, accounted for about 18% of the cases and showed the highest proportion of multi-drug resistance (MDR) isolates, with 48%, 57.5% and 36% of MDR, respectively. Regarding the antimicrobial susceptibility testing for a number of antimicrobial categories/families, the largest proportion of isolates showing resistance to a median of five antimicrobial categories was observed in P. aeruginosa, Stenotrophomonas maltophilia and Burkolderia spp. In contrast, infections caused by Staphylococcus, Streptococcus spp. and Pasteurella multocida were highly sensitive to conventional antimicrobials authorized for veterinary use (categories D and C). The emergence of AMR major nosocomial opportunistic pathogens such as P. aeruginosa, S. maltophilia and K. pneumoniae in pet rabbits can represent a serious public health challenge. Consequently, collaboration between veterinarians and human health professionals is crucial in the fight against antimicrobial resistance, to optimize, rationalize and prudently use antimicrobial therapies in domestic animals and humans

    Antimicrobial resistance profiles and characterization of Escherichia coli strains from cases of neonatal diarrhea in Spanish pig farms

    Get PDF
    Escherichia coli is considered one of the most common agents associated with neonatal diarrhea in piglets. The aim of this work was to characterize the pathogenic and antimicrobial resistance (AMR) profiles of 122 E. coli strains isolated from pigs suffering diarrhea (n = 94) and pigs without diarrhea (n = 28) of 24 farms in Spain. Virulence factors, toxins and AMR (ESBL and colistin) genes and AMR phenotypes of E. coli isolates were analyzed. Low prevalence of pathogenic E. coli strains (26%) was found in both groups. However, ETEC and VTEC strains were more frequently isolated from diarrheic piglets. Irrespectively of diarrhea occurrence, 97.5% of the strains showed a multidrug-resistance (MDR) profile to aminopenicillins, sulfonamides and tetracyclines. It was found that 22% of E. coli was CTX-M+, with CTX-M-14 being the principal allelic variant. Remarkably, 81.5% of CTX-M+ strains were isolated from diarrheic animals and presented an extended MDR profile to aminopenicillins, quinolones and aminoglycosides. Finally, low frequencies of colistin resistance genes mcr-1 (4/122) and mcr-4 (1/122) were found. MDR E. coli strains are circulating in pig farms of Spain, representing a serious threat to animal and public health. More appropriate diagnostic approaches (genetic and AMR phenotypic analysis) should be implemented in animal health to optimize antibiotic treatments.info:eu-repo/semantics/publishedVersio

    Extended-Spectrum β-Lactam Resistant Klebsiella pneumoniae and Escherichia coli in Wild European Hedgehogs (Erinaceus europeus) Living in Populated Areas

    Get PDF
    Wildlife has been suggested to be a good sentinel of environmental health because of its close interaction with human populations, domestic animals, and natural ecosystems. The alarming emergence of antimicrobial resistance (AMR) in human and veterinary medicine has activated/triggered the awareness of monitoring the levels of AMR pollution in wildlife. European hedgehogs (Erinaceus europaeus) are common wild species habiting urban areas in Europe. However, there are few studies conducted in hedgehogs as reservoirs of AMR bacteria or genes. The aim of this study was to assess the occurrence and distribution of ESBL, AmpC, and carbapenem-resistant enterobacteria and AMR genes in wild European hedgehogs in Catalonia, a densely populated region of NE Spain. A total of 115 hedgehogs admitted at the Wildlife Rehabilitation Center of Torreferrussa were studied. To our knowledge, this is the first description of β-lactam resistant enterobacteria in wild hedgehogs. Interestingly, 36.8% (42/114) of the animals were detected as carriers of β-lactamase/carbapenemase resistance genes. Klebsiella spp. (59.6%), and specifically K. pneumoniae (84.6%), were the bacteria with the highest proportion of resistance genes, followed by E. coli (34.6%) and C. freundii (5.8%). The most frequently detected genetic variants were blaCTX-M-15 (19.3%), blaSHV-28 (10.5%), blaCMY-1 (9.7%), blaCMY-2 (8.8%), and blaOXA-48 (1.7%). In addition, 52% (27/52) of the isolates presented a multidrug resistance (MDR) phenotype and 31% had an extended drug resistance (XDR) profile. No clustering of animals with AMR genes within the study region was shown in the spatial analysis, nor differences in the proportion of positive animals among Animals 2021, 11, 2837. https://doi.org/10.3390/ani11102837 https://www.mdpi.com/journal/animals Animals 2021, 11, 2837 2 of 13 regions, were detected. The results of this study suggest that wild European hedgehogs could be good sentinels of AMR environmental pollution, especially in areas with a high human population density, because they either inhabit and/or feed in an anthropogenic environment. In conclusion, it is crucial to raise awareness of the strong interconnection between habitats and compartments, and therefore this implies that AMR issues must be tackled under the One Health approachinfo:eu-repo/semantics/publishedVersio

    Antimicrobial Resistance in Bacteria Isolated from Exotic Pets : The Situation in the Iberian Peninsula

    Get PDF
    Literature related to antimicrobial resistant (AMR) bacteria in exotic pets is minimal, being essential to report objective data on this topic, which represents a therapeutic challenge for veterinary medicine and public health. Between 2016 and 2020, laboratory records of 3156 exotic pet specimens' microbiological diagnoses and antibiotic susceptibility testing (AST) results were examined. The samples were classified into three animal classes: birds (n = 412), mammalia (n = 2399), and reptilian (n = 345). The most prevalent bacteria in birds and mammals were Staphylococcus spp. (15% and 16%), while in reptiles they were Pseudomonas spp. (23%). Pseudomonas was the genus with the highest levels of AMR in all animal groups, followed by Enterococcus spp. By contrast, Gram-positive cocci and Pasteurella spp. were the most sensitive bacteria. Moreover, in reptiles, Stenotrophomonas spp., Morganella spp., and Acinetobacter spp. presented high levels of AMR. Multidrug-resistant (MDR) bacteria were isolates from reptiles (21%), birds (17%), and mammals (15%). The Enterobacterales had the highest MDR levels: S. marcescens (94.4%), C. freundii (50%), M. morganii (47.4%), K. pneumoniae (46.6%), E. cloacae (44%), and E. coli (38.3%). The prevalence of MDR P. aeruginosa strains was 8%, detecting one isolate with an XDR profile. Regarding antimicrobial use, many antibiotics described as critically important for human use had significant AMR prevalence in bacteria isolated from exotic pets. Under the One-Health approach, these results are alarming and of public health concern since potential transmission of AMR bacteria and genes can occur from exotic pets to their owners in both senses. For this reason, the collaboration between veterinarians and public health professionals is crucial

    High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia

    Get PDF
    Most of the studies focused on antimicrobial resistance (AMR) performed in wildlife describe Escherichia coli as the principal indicator of the selective pressure. In the present study, several species of Enterobacterales with a large panel of cephalosporin resistant (CR) genes have been isolated from wildlife in Catalonia. A total of 307 wild animals were examined to determine the prevalence of CR enterobacteria, AMR phenotypes and the presence of common carbapenem and CR genes. The overall prevalence of CR-phenotype was 13% (40/ 307): 17.3% in wild mammals (18/104) and 11.5% in wild birds (22/191) (p<0.01). Hedgehogs showed the highest prevalence (13.5% of 104) of the mammal specimens, and raptors the highest in bird specimen (7.3% of 191). Although CR E. coli was the most frequently isolated (45%), other CR- Enterobacterales like Klebsiella pneumoniae (20%), Citrobacter freundii (15%), Enterobacter cloacae (5%), Proteus mirabilis (5%), Providencia spp (5%) and Serratia marcescens (2.5%) were also isolated. A high diversity of CR genes was identified among the isolates, with 50% yielding blaCMY-2, 23% blaSHV-12, 20% blaCMY-1 and 18% blaCTX-M-15. Additionally, resistance to carbapenems associated to OXA-48 gene was found. Most of the CR isolates, principally K. pneumoniae and C. freundii, were multiresistant with co-resistance to fluoroquinolones, tetracycline, sulphonamides and aminoglycosides. This study reports high prevalence of Enterobacterales harbouring a variety of CR genes and OXA-48 mediated-carbapenem resistance, all of them frequently associated to nosocomial human infections, for the first time in wild mammals and wild birds. Implementation of control measures to reduce the impact of anthropogenic pressure in the environment is urgently needed.info:eu-repo/semantics/publishedVersio
    corecore