56 research outputs found

    Autoignition Chamber for Remote Testing of Pyrotechnic Devices

    Get PDF
    The autoignition chamber (AIC) performs by remotely heating pyrotechnic devices that can fit the inner diameter of the tube furnace. Two methods, a cold start or a hot start, can be used with this device in autoignition testing of pyrotechnics. A cold start means extending a pyrotechnic device into the cold autoignition chamber and then heating the device until autoignition occurs. A hot start means heating the autoignition chamber to a specified temperature, and then extending the device into a hot autoignition chamber until autoignition occurs. Personnel are remote from the chamber during the extension into the hot chamber. The autoignition chamber, a commercially produced tubular furnace, has a 230-V, single-phase, 60-Hz electrical supply, with a total power output of 2,400 W. It has a 6-in. (15.2-cm) inner diameter, a 12-in. (30.4-cm) outer diameter and a 12-in.- long (30.4-cm), single-zone, solid tubular furnace (element) capable of heating to temperatures up to 2,012 F (1,100 C) in air

    The Green Bank Northern Celestial Cap Pulsar Survey - I: Survey Description, Data Analysis, and Initial Results

    Get PDF
    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4,096 channels every 81.92 μs\mu s. This survey will cover the entire sky visible to the Green Bank Telescope (δ>−40∘\delta > -40^\circ, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<<30 pc cm−3\mathrm{pc\,cm^{-3}}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of −-1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214++5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636++5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 MJM_\mathrm{J}). PSR J0645++5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434++7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816++4510 is an eclipsing MSP in a short-period orbit (8.7 hours) and may have recently completed its spin-up phase.Comment: 18 pages, 10 figures, 5 tables, accepted by Ap

    The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars

    Full text link
    We present timing solutions for ten pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program in analysis of drift-scan data. Following discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930−-2301, a pulsar with nulling fraction lower limit of ∼\sim30\% and nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557−-2948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled and is likely a former member of a binary system which was disrupted by a second supernova. The paucity of such so-called `disrupted binary pulsars' (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.Comment: 9 pages, 5 figure

    The Green Bank North Celestial Cap Pulsar Survey. IV: Four New Timing Solutions

    Get PDF
    We present timing solutions for four pulsars discovered in the Green Bank Northern Celestial Cap (GBNCC) survey. All four pulsars are isolated with spin periods between 0.26 \,s and 1.84 \,s. PSR J0038−-2501 has a 0.26 \,s period and a period derivative of 7.6×10−19 s s−1{7.6} \times {10}^{-19}\,{\rm s\,s}^{-1}, which is unusually low for isolated pulsars with similar periods. This low period derivative may be simply an extreme value for an isolated pulsar or it could indicate an unusual evolution path for PSR J0038−-2501, such as a disrupted recycled pulsar (DRP) from a binary system or an orphaned central compact object (CCO). Correcting the observed spin-down rate for the Shklovskii effect suggests that this pulsar may have an unusually low space velocity, which is consistent with expectations for DRPs. There is no X-ray emission detected from PSR J0038−-2501 in an archival swift observation, which suggests that it is not a young orphaned CCO. The high dispersion measure of PSR J1949+3426 suggests a distance of 12.3 \,kpc. This distance indicates that PSR J1949+3426 is among the most distant 7% of Galactic field pulsars, and is one of the most luminous pulsars.Comment: 7 pages, 5 figure

    The Green Bank Northern Celestial Cap Pulsar Survey. II. the Discovery and Timing of 10 Pulsars

    Get PDF
    We present timing solutions for 10 pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program during an analysis of drift-scan data. Following the discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high-precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930-2301, a pulsar with a nulling fraction lower limit of ∼30% and a nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557-2948 is an isolated, 44 ms pulsar that has been partially recycled and is likely a former member of a binary system that was disrupted by a second supernova. The paucity of such so-called \ disrupted binary pulsars\ (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 ms pulsar in a 44-day orbit with a low-mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr

    Discovery of the Optical/Ultraviolet/Gamma-ray Counterpart to the Eclipsing Millisecond Pulsar J1816+4510

    Get PDF
    The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and minimum companion mass of 0.16 Msun it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the gamma-ray counterpart to this pulsar, and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris we detect pulsations in the unclassified gamma-ray source 2FGL J1816.5+4511, implying an efficiency of ~25% in converting the pulsar's spin-down luminosity into gamma-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (<0.1") and unusual colors. Assuming that it is the companion, with R=18.27+/-0.03 mag and effective temperature >15,000 K it would be among the brightest and hottest of low-mass pulsar companions, and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it is a factor of two larger than most white dwarfs of its mass, but a factor of four smaller than its Roche lobe. We discuss possible reasons for its high temperature and odd size, and suggest that it recently underwent a violent episode of mass loss. Regardless of origin, its brightness and the relative unimportance of irradiation make it an ideal target for a mass, and hence a neutron star mass, determination.Comment: 10 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    PEACE: Pulsar evaluation algorithm for candidate extraction-a software package for post-analysis processing of pulsar survey candidates

    Get PDF
    Modern radio pulsar surveys produce a large volume of prospective candidates, the majorityof which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspected in order to determineif they are real pulsars. This process can be labour intensive. In this paper, we introducean algorithm called Pulsar Evaluation Algorithm for Candidate Extraction (PEACE) whichimproves the efficiency of identifying pulsar signals. The algorithm ranks the candidates basedon a score function. Unlike popular machine-learning-based algorithms, no prior training datasets are required. This algorithm has been applied to data from several large-scale radiopulsar surveys. Using the human-based ranking results generated by students in the AreciboRemote Command Center programme, the statistical performance of PEACE was evaluated. It was found that PEACE ranked 68 per cent of the student-identified pulsars within the top0.17 per cent of sorted candidates, 95 per cent within the top 0.34 per cent and 100 per centwithin the top 3.7 per cent. This clearly demonstrates that PEACE significantly increases thepulsar identification rate by a factor of about 50 to 1000. To date, PEACE has been directlyresponsible for the discovery of 47 new pulsars, 5 of which are millisecond pulsars that maybe useful for pulsar timing based gravitational-wave detection projects. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    The green bank northern celestial cap pulsar survey. I. survey description data analysis and initial results

    Get PDF
    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts, at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4096 channels every 81.92 μs. This survey will cover the entire sky visible to the Green Bank Telescope (δ \u3e -40°, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (\u3c30 pc cm-3) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of -1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214+5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636+5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 M J). PSR J0645+5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434+7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816+4510 is an eclipsing MSP in a short-period orbit (8.7 hr) and may have recently completed its spin-up phase. © 2014. The American Astronomical Society. All rights reserved.

    Searching for pulsars using image pattern recognition

    Get PDF
    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets - the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ;9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI\u27s performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The performance of this system can be improved over time as more training data are accumulated. This AI system has been integrated into the PALFA survey pipeline and has discovered six new pulsars to date. © 2014. The American Astronomical Society. All rights reserved
    • …
    corecore