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SEARCHING FOR PULSARS USING IMAGE PATTERN RECOGNITION
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4 Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada

5 Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, USA
6 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA

7 NRAO, Charlottesville, VA 22903, USA
8 Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211, USA

9 Department of Physics, Syracuse University, NY 13244, USA
10 Max-Planck-Institut für Gravitationsphysik, D-30176 Hanover, Germany

11 Leibniz Universität Hannover, D-30167 Hannover, Germany
12 International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia

13 Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn, Victoria 3122, Australia
14 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA

15 Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA
16 Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604-3003, USA

17 Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA
18 University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL, UK

19 ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, NL-7900 AA, Dwingeloo, The Netherlands
20 Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, The Netherlands

21 Department of Physics, West Virginia University Morgantown, WV 26506, USA
Received 2013 September 3; accepted 2013 December 10; published 2014 January 16

ABSTRACT

In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which
can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-
mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI)
program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the
PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars
from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection
programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a
set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar
Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four
diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each
candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks
in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The
trained AI’s performance has been validated with a large set of candidates from a different pulsar survey, the Green
Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related
candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test
candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars
and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80%
were ranked higher than any noise or interference. The performance of this system can be improved over time as
more training data are accumulated. This AI system has been integrated into the PALFA survey pipeline and has
discovered six new pulsars to date.

Key words: methods: data analysis – pulsars: general – stars: neutron – techniques: image processing

Online-only material: color figures

1. INTRODUCTION

Recent pulsar surveys such as the Pulsar Arecibo L-band
Feed Array (PALFA; Cordes et al. 2006; Kaspi 2012; Lazarus
2013) survey and the Green Bank North Celestial Cap (GBNCC;
Lynch et al. 2013; K. Stovall et al., in preparation) survey are
expected to find—or are already finding—hundreds of new

pulsars among many millions of pulsar candidates. However,
the surveys are polluted by radio frequency interference (RFI)
that makes it difficult to select the pulsars from the candidates
produced using simple metrics such as the signal-to-noise ratio
(S/N). Human experts can look at diagnostic plots of the
candidates and identify the pulsars more successfully, but it
is impractical to inspect millions of candidates that way. In
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this paper, we present an artificial intelligence (AI) system that
emulates human experts and classifies pulsar candidates by
using patterns from four standard diagnostic plots—the pulse
profile, time versus phase plot, frequency versus phase plot, and
dispersion-measure (DM) curve (see Section 2.1 for details).
This system was trained with PALFA candidates classified
by human experts, its parameters were tuned using a cross-
validation set of candidates, and its final performance was
compared against a large set of manually identified candidates
from the GBNCC survey (project code: GBT09C-057). Both the
PALFA and GBNCC candidates are generated using a pipeline
that runs the PRESTO22 search software (Ransom 2001; Ransom
et al. 2002), but other pulsar-searching pipelines, such as the
one in the Einstein@Home project (Allen et al. 2013; Knispel
et al. 2013), can produce these same diagnostic plots, so it is
possible to apply our AI system to most pulsar surveys with
little modification.

In the past, several successful candidate-sifting schemes have
been developed for different surveys. Some involve graphical
interfaces that allow for the interactive selection of pulsar
candidates on the basis of the pulse period and S/N (Faulkner
et al. 2004). Some apply heuristic scoring algorithms to the
candidate diagnostic plots, using statistical tests, curve fitting,
and a graphical interface to visually inspect the distribution
of pulsar scores in the scores’ parameter space (Keith et al.
2009). An effective sorting scheme was constructed (Lee 2009;
Lee et al. 2013) using a combination of six carefully designed
heuristic scores. One particular score compares the candidate’s
pulse frequency against the frequency distribution drawn from
a large sample of the survey candidates; recognizing that the
majority of candidates are RFI, this single histogram removes
a large fraction of the repeatedly observed RFI, especially
harmonics of the 60 Hz interference from the power supply.
Eatough et al. (2010) improved the method of Keith et al. (2009)
by applying machine learning (ML) to the heuristic scores.
Instead of inspecting the score distribution by eye, they fed the
scores into an artificial neural network and trained the network
to classify candidates. Bates et al. (2012) expanded the number
of scores used by fitting the candidate’s features with different
model curves, and they also used a neural network to combine
these scores. Another comprehensive score-based system (Kaspi
2012; Lazarus 2013) was developed and has been used to find
many pulsars for the PALFA survey. Most recently, Knispel
et al. (2013) designed algorithms that check for outstanding
signals in some of the diagnostic plots by binning the plots
with predesigned patterns in the shape of vertical lines or area
patches, and they applied them in the Einstein@Home project.

Notably, these previous candidate-sifting systems use heuris-
tically designed functions that characterize patterns in the di-
agnostic plots into a set of scores. Such score-based systems
have some advantages. They make good use of the candidate’s
properties like period and DM and the computed information
like the significance of the periodicity and the width and height
of the summed profile. However, such systems often rely on
matching candidates with some predesigned patterns, such as
a Gaussian-like peak. Some of these designed patterns do not
match pulsars with multiple pulse peaks well. When these de-
signed patterns do match the candidate, they tend to average out
the details and small features in the diagnostic plot. These small
features can sometimes be very useful in distinguishing pulsars
from RFI. Some score-based systems select pulsar candidates

22 http://www.cv.nrao.edu/∼sransom/presto/

by drawing the score distributions from known pulsars. Such
systems may be biased against rare types of pulsars, such as
pulsars with wider profiles, skewed DM curves, or low signal
strength.

In contrast, the Pulsar Image-based Classification System
(PICS) AI applies image pattern recognition directly to the
original diagnostic plots and determines what patterns to match
through ML. Using the original diagnostic plots allows the AI
to utilize the detailed information in the plots. Using ML allows
us to train the AI with a wide variety of pulsar candidates.
A significant fraction of our training candidates are pulsars or
their harmonics with weak, broad, or multi-peak pulse profiles
(for example, a harmonic signal at one-half period of the
fundamental would be a factor of ∼2 broader and 1/

√
2 weaker,

and a harmonic at two times period would have two peaks). As a
result, the PICS AI is sensitive not only to pulsar candidates but
also to their harmonics. In fact, one of the new pulsars discovered
by the PICS, PSR J1914+08 (Figure 2), was identified from its
6/11, 6/7, and 2/3 harmonics. In this case, the fundamental
frequency was missed by the PALFA pipeline because of RFI.
Finally, an important feature of the PICS AI is that it neglects
information such as the candidate’s period, DM, and sigma
value. Instead, it focuses on only the details in the normalized
diagnostic plots. This feature makes it a good complement to
the score-based systems.

This paper introduces a new approach to the candidate-sifting
problem by using supervised ML based on image patterns.
In Section 2, we describe the candidate plots that contain the
physical features distinguishing them as pulsars, and we detail
the data preparation process required to adapt these plots as
inputs to the ML system. We also describe the structure of
the PICS AI system. In Section 3, we detail the AI’s test
performance and results from classifying GBNCC data. Finally
in Section 4, we discuss the results and the AI system’s unique
strengths and features.

2. IMPLEMENTATION

The diagnostic plot that a human expert relies on to identify a
pulsar contains several important subplots. In order to combine
the information from these subplots, we constructed the PICS
AI with a two-layer hierarchy (Figure 1). The first layer consists
of a group of ML classifiers trained to look at different subplots,
providing a pool of experts capable of recognizing pulsar
patterns, while the second layer combines the classifications
from the first layer to classify the candidate. Each first-layer
classifier rates how “pulsar-like” a particular subplot of the
candidate is with a number between 0 (not a pulsar) and 1
(a pulsar), giving a prediction matrix that is the output of the
first layer. These votes are fed into a second-layer classifier that
learns to properly weight these votes and forms a final consensus
on how pulsar-like a candidate is.

In this section, we provide a detailed discussion of the PICS
AI implementation,23 starting from the most important subplots
that the AI uses.

2.1. Four Features

Our goal is to train an AI program that mimics human experts.
Here we first introduce how the PALFA pipeline finds pulsar
candidates and then discuss which features human experts look
for when identifying promising candidates.

23 The AI source code and a trained classifier are accessible on github
https://github.com/zhuww/ubc_AI
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1
2 3 4

F1:86-94%

Logistic Regression

SVM SVM SVM SVM NNANNCNNA CNN

F1:96%

Figure 1. First layer of classifiers learns how to rate each feature to ∼90% F1, and the second layer learns how to classify candidates on the basis of the output of
the first layer. (SVM: support vector machine, NN: Neural Network, LR: logistic regression and adaboost are machine learning algorithms. See Section 2.3 for the
definition of F1.)

(A color version of this figure is available in the online journal.)

1

2 3

4

Figure 2. Prepfold diagnostic plot for PICS-discovered pulsar PSR J1914+08. The four key subplots of the PICS AI system are highlighted: 1. summed pulse profile,
2. time vs. phase plot, 3. frequency vs. phase plot, and 4. DM curve. For subplots 1, 2, and 3, the pulse phase are wrapped around twice to show two duplicated pulses.

(A color version of this figure is available in the online journal.)
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The PALFA survey uses the seven-beam L-band (1.4 GHz)
receiver at the Arecibo observatory. The survey takes five-
minute snapshots of the Galactic plane. In recent observations,
data were taken using the Mock spectrometer, which has a
65.5 μs sampling time and 960 frequency channels covering
322.6 MHz of bandwidth. The data from each beam are analyzed
using a PRESTO-based pulsar-searching pipeline.

Pulsar radio emission is a broadband signal originating from
kiloparsec distances. Therefore, the signal is dispersed by the
ionized interstellar medium. This causes the low-frequency
components of a signal to arrive later than the ones at higher
frequency. The delay between the two frequencies ν1 and ν2 is
proportional to DM(ν−2

1 − ν−2
2 ), where DM—the dispersion

measure—is the column density of free electrons along the
line of sight. This is nonzero and remains nearly constant
for a pulsar. Because of this, the wide-band signals of pulsars
need to be recorded into narrow frequency channels to prevent
smearing by dispersion. PRESTO first searches for narrow band
or nondispersed periodic signals in the raw channelized data and
removes them since they are likely terrestrial. Then it generates
time series for an array of DM values by adding appropriate time
delays to each frequency channel. The range of DM searched is
0 pc cm−3 < DM < 5000 pc cm−3, which easily encompasses
the expected Galactic interstellar dispersion for all lines of sight
in the PALFA survey (Cordes & Lazio 2001) and also maintains
sensitivity to any possible highly dispersed extragalactic radio
sources (e.g., Lorimer et al. 2007; Thornton et al. 2013; Spitler
et al. 2014). After that, it searches for periodic signals in the
“dedispersed” time series by using a Fourier Transform and
harmonic summing, and it picks out the significant periodicity
peaks in the power spectrum (see Ransom 2001 for details). For
each candidate periodicity, PRESTO folds the dedispersed time
series into a three-dimensional (3D) data cube (time interval,
phase, and channel frequency) by using the period, and it stores
the folded data in a pfd format file together with data descriptors
such as the date and coordinates of the observation. These pfd
files can later be converted to candidate diagnostic plots by using
routines in the PRESTO software suite.

Direct inspection of the folded 3D data array is inconvenient,
so it is usually projected into several lower-dimensional plots.
The PRESTO routine show_ pfd is designed to display the pfd
file as a candidate plot that contains several of these projections.
Figure 2 is an example pulsar candidate plot, with the most
important subplots highlighted.

1. Summed profile. One can sum all frequency channels and
time intervals to create a summed intensity versus phase
pulse profile. Pulse profiles of real pulsars are usually
composed of one or several very narrow peaks, though
there are some known pulsars with pulse profiles that are
broad and/or contain multiple peaks.

2. Time versus phase plot. This plot is obtained by summing
the data over the different frequency channels, leaving
the pulse profile as averaged over subintervals of the
observation. One or more vertical stripes in this plot
indicates that a pulsed signal was observed for the duration
of the scan.

3. Frequency versus phase plot. Summing the data cube
over the different time intervals leaves the frequency
versus phase plot. The presence of one or more persistent
vertical lines in this subplot, as in the example, indicates a
broadband signal during the pulsed emission, as expected
for a pulsar candidate. However, scintillation caused by the

interstellar medium may affect a pulsar’s signal, degrading
the signal in some frequency channels.

4. DM curve. The plotting program searches over a range of
DMs around the best reported value. For each DM trial,
it dedisperses the data cube accordingly and calculates the
χ2 of the dedispersed pulse profile against a horizontal line
fit. The DM curve is a plot of the trial DMs against their
corresponding χ2 values. A large χ2 value indicates that the
periodic signal deviates strongly from simple white noise.
The DM curve of a real pulsar will likely peak at a nonzero
value unless affected by strong RFI.

These are the four most important features that human experts
look at when classifying candidates, and they are the inputs to
our AI system.

2.2. Data Preparation

The application of pattern recognition to pulsar candidates is
not a trivial task. This is because the integration time of survey
observations may vary, and the number of phase bins with which
the data are folded also changes depending on the period of the
candidate. As a result, the number of data points in the subplots
can vary from candidate to candidate. For ML to work, we need
to carefully prepare these data and make sure the input data
blocks for a particular classifier have identical shape and size.

We extract the key feature plots from the pfd files. These plots
consist of one-dimensional (1D) data arrays (summed profile or
DM curve) and two-dimensional (2D) data (time versus phase
and frequency versus phase plots). The sizes of the data arrays
vary from candidate to candidate. For example, some candidates
have 64 phase bins, while others may have only 32 bins, and
some candidates have 50 time steps, while others have 100.
This is a result of the search pipeline, which uses fewer phase
bins and more time steps for short period pulsars and uses more
phase bins with fewer time steps for long period pulsars—in
either case, the number of pulses coherently added in each time
interval is roughly the same. For ML to work on these plots, the
features should have the same size and scale, so we down-sample
or interpolate the data to a uniform size: 64 bins for the summed
profile, 64 × 64 (or 48 × 48 depending on the classification
algorithm; see Table 1 for details) bins for the time versus phase
and frequency versus phase plots, and 60 bins for the DM curve.
Piecewise linear interpolation was used for the 1D data and
spline interpolation24 for the 2D data. We also normalize the
data to zero median and unit variance to remove the absolute
scale of the plots. For the 2D image arrays, normalization is
performed line by line along the phase axis, which removes
instrumental variations over the course of the observation and
across the observing band but maintains the variance in signal
across the phase—this should be dominated by the pulsar signal.

Once the plots are resized and normalized, we can use them to
train a ML system. However, the thousands of pixels in the 2D
plots may slow down the training process for the support vector
machine (Section 2.3) classifiers. In this case, the number of
internal parameters requiring training is proportional to the size
of the input data, so to speed up the computation, the image fea-
tures (time versus phase and frequency versus phase plots) are
characterized by a principal component analysis25 (PCA). The
PCA algorithm uses a singular value decomposition to compute

24 The 2D interpolation routine in http://docs.scipy.org/doc/scipy/reference/
generated/scipy.ndimage.interpolation.map_coordinates.html was used.
25 http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
PCA.html
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Table 1
Classifier Parameters and Test Performance

Classifier Feature (Sizea) Nodesb γ c Cd F1
e

ANN Summed profile (64) 25 · · · 2 0.86
SVM Summed profile (64) · · · 0.08 1 0.93
CNN Time vs. phase (48 × 48) 500 · · · 1 0.92
SVM Time vs. phase (64 × 64)f · · · 0.01 1 0.88
CNN Frequency vs. phase (48 × 48) 500 · · · 1 0.94
SVM Frequency vs. phase (64 × 64)f · · · 0.001 24 0.88
ANN DM curve (60) 9 · · · 10 0.91
SVM DM curve (60) · · · 0.2 25 0.91
LR Layer-one pool (8) · · · · · · 0.1 0.96

Notes.
a The input features were down-sampled or interpolated to a uniform size.
b Number of nodes in the hidden layer of the neural network (NN). For the CNNs,
only the number of nodes of the last hidden layer is listed. See Section 2.5 for
more details.
c γ is the radius parameter for the rbf kernel function used in the SVM. The
traditional SVM can only use linear boundaries to classify data. The kernel
functions enable the SVM to find curved boundaries. The rbf-kernel SVM is
considered a more effective classifier than the traditional SVM.
d The C parameter controls the regulation in the ANN and the SVM. Here
regulation means that the ANN or SVM tries to minimize a penalty function
while finding the optimal set of internal parameters wi . The function is often
defined as (

∑
w2

i )/C in order to penalize very large weights.
e The average F1 scores of the classifiers from 10 independent trials. In each trial,
we randomly shuffle our known candidates before splitting them into training
and testing data, after which training is commenced. The standard deviations of
the F1 scores are <0.01.
f PCA compression was applied to prepare 2D image data only for the SVM
classifiers. We compress the 64 × 64 image into 24 PCA components.

a limited set of basis images from the training data. An un-
known candidate’s data, therefore, has a new representation as
the set of eigenvalues resulting from the projection onto these
basis images. In this way, we can compress the image features
from thousands of numbers per candidate to only 24 numbers,26

greatly reducing the number of parameters required in a fit. Fig-
ure 3 shows the original 2D images of a pulsar candidate and
their reconstructions from the most significant 24 PCA com-
ponents. One can see that the PCA reconstructions capture the
important features in the images, especially the vertical stripes.
By filtering out the weaker PCA components, we also reduce the
noise level in the reconstructed image. Some image classifiers
trained much faster with PCA-compressed features and perform
as well as those trained with full-sized images. However, we did
not apply the PCA compression for the deep neural net classi-
fiers because they perform significantly better without it.

One last challenge was to prevent the AI from developing any
phase-related bias. In principle, a candidate’s pulse may appear
at any phase, but in practice many candidates peak at phase 0 or
0.5. We found that an earlier version of the AI failed to detect
some good candidates that peaked away from phase 0 or phase
0.5. We resolved this problem by shifting candidates’ strongest
peaks to phase 0.5 before feeding them to the AI. The resulting
AI was tested with candidates of random phase and showed no
sign of bias.

In summary, the data preparation procedure for all candidates
fed into the AI system involves rescaling the data to zero median
and unit variance, shifting the peak intensity to a phase of 0.5,

26 The number of singular vectors used in the decomposition is a free
parameter in the AI system but is fixed by optimizing the performance in
cross-validation tests.

Figure 3. Top: The original time vs. phase and frequency vs. phase plots from
a pulsar candidate. Bottom: The PCA-reconstructed plots from the top 24 PCA
components.

down-sampling or interpolating onto a standardized grid, and
optionally, applying PCA.

2.3. Two-layer AI: A Committee of Experts

The first layer of PICS (see Figure 1) uses a combination
of two ML algorithms on each of the four subplots, giving
eight ratings in total. The set of ML algorithms includes
artificial neural networks (ANNs; see Section 2.4 for details),
convolutional neural networks (CNNs;27 see Section 2.5 for
details) and support vector machines (SVMs;28 an algorithm
that finds a direction in the parameter space on which the
distance between the two classes of data points are maximized;
see Chang & Lin 2011 and Pedregosa et al. 2011 for the
implementation details). The choice of which algorithms to
use was determined both by their individual performance and
their benefit to the overall performance. It should be noted that
the combinations were the result of extensive testing, including
using other standard ML algorithms such as decision trees. In the
end, PICS uses an ANN with one hidden layer of logistic units
and a radial kernel SVM classifier on each of the 1D subplots
(pulse profile, DM curve), and it uses a CNN and SVM on each
of the 2D subplots (pulse interval versus phase, pulse frequency
versus phase).

In the second layer, we combine the scores from the eight
first-layer classifiers by using another ML classifier (Figure 1).
Several algorithms are appropriate for this purpose, and we
tested logistic regression (LR), ANN, and SVM algorithms. The
best performance was from a simple LR with L2 penalty,29 and

27 https://github.com/aberndsen/NeuralNetwork
28 http://scikit-learn.org/stable/modules/svm.html
29 A L2 penalty means the algorithm also tries to minimize (

∑
i w2

i )/C,
preventing the weights wi from growing too large. C is a small control
parameter.
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this option was chosen for the second layer of the PICS system.
The LR algorithm assigns each of the first-layer scores (xi) a
weight (wi), computes their weighted sum, and converts this
sum to a probability by using the logistic function

P = 1

1 + e− ∑
i wixi

. (1)

The LR algorithm finds the best set of wi that minimize the
classification errors in the training data.

In order to test how well the classifier can perform on new
data, we employ a validation test. To do this, we first split the
labeled PALFA data into a training set and a test, or cross-
validation, set. We use the training data to train the classifiers
and the validation data to test them. Because the validation data
were set aside from the beginning, this test result is a reliable
estimate of the classifier’s performance.

A commonly used performance metric is the F1 score, defined
as the harmonic average of precision p (the ratio of true pulsars
to the total number of candidates ranked as a pulsar) and
completeness c (the ratio of ranked true pulsars to the total
number of pulsars in the validation set)

F1 = 2pc

p + c
. (2)

The F1 score from validation tests may vary slightly from test
to test because of random fluctuations. We run many iterations
of training and testing in order to find a reliable estimate of it.
Every iteration starts with randomly splitting the labeled data
into new groups of training and test data, so the new test will be
different from the previous one (see Table 1).

The classifiers in both layers of the system all have internal
design parameters that need to be fixed. This is accomplished by
a grid search over the possible values of the design parameters
and is fixed by the set that maximizes the F1 score in a validation
test. The optimized parameters of the eight classifiers and their
test performance on each feature plot is listed in Table 1. The
performance is also depicted in Figure 1, which shows the
overall structure of the PICS system.

Finally, in this particular searching-for-pulsars problem, it
might seem that we should prefer a classifier with higher com-
pleteness than precision. In general, maximizing the precision
alone would result in a cautious AI system that would miss many
true pulsars, while maximizing completeness would bring in a
lot of false positives. When training the PICS, we preferred a
balanced AI that maximizes F1. This is because we want to
improve the AI’s completeness when we add more varieties of
pulsars to the training data, and we also want to improve its
precision when we add more RFI candidates—putting empha-
sis on one metric will hinder our ability to improve the other.
When applying the AI in practice, we can adjust its complete-
ness and precision to our needs by changing the cut on P, the
AI probability score.

2.4. The Neural Networks

In the first layer of the PICS, we used the ANN for the 1D
subplots and the CNN for the 2D subplot, which are different
types of neural networks. In this section, we briefly introduce
some terminology common to the understanding of both these
neural networks. For details regarding the implementation of
LR and SVM, please refer to Pedregosa et al. (2011) and Chang
& Lin (2011).

Biologically, a neural network is a collection of neurons
connected by synapses, where individual neurons respond to,
or “fire under,” different inputs. An artificial neural network
is the computer analog, modeled as a function of many inputs
(synapses) to produce a single output. These functions are often
called activation functions h and typically have finite range for
classification purposes. The most commonly used activation
functions are the logistic (sigmoid) function h(x) = 1/(1 +
exp(−x)) and the hyperbolic tangent function h(x) = tanh(x).
The former maps any float input to a number between 0 and 1
and the latter maps to a number between −1 and 1.

In the ANN, these neurons are distributed among different
layers. All neurons in a single layer l receive the same inputs
from the previous layer a(l−1) but weights the signals with a
unique set of parameters (w(l)

i for the ith neuron in the lth
layer). Thus, neurons in the same layer “fire” under different
circumstances as determined by their weights w(l)

i and bias bi,
h(w(l)

i · a(l−1) + bi). The weights w(l) connect the outputs of a
previous layer in the ANN to the input of the next, serving the
role of the synapses in the neural network. A given layer with N(l)
neurons accepting N(l−1) inputs has (N(l) + 1) × N(n−l) weights,
or synapses, which makes the number of synapses in a given
network much larger than the number of neurons. A synapse,
however, controls how much weight is given to a single input,
so the collection of synapses forms the pattern that will produce
an activation. Since there are so many synapses in an ANN,
there are many patterns to which the system can respond. In
practice, the patterns are not known, so the weights are initialized
randomly and are determined through the training process.

We train the neural net with manually labeled candidates
through back-propagation. The goal of training is to minimize
the difference between the neural net output and the human
classifications y (0 for RFI and 1 for pulsar) of the candidates.
This difference, the prediction error δ(l) = a(l) − y, can be
formed for each layer l, and the correction to the jth weight in
the ith neuron Δ(l)

i,j is determined as a function of a and δ
(l+1)
j .

The exact functional form depends on the choice of activation
function and error function. In practice, Δ(l)

i,j is often averaged
over an ensemble of candidates, since training is done in batches
for computational efficiency.

2.5. The Convolutional Neural Network

The best individual classifier in the collection of experts is
the CNN trained on the frequency versus phase plot. This deep,
five-layer network is similar to LeNet-5 (LeCun et al. 1998), a
system proven to be very successful in recognizing handwritten
digits. This CNN also represents the state of the art in ML
and, as such, warrants a detailed description of its structure
and an explanation of its superior performance in the candidate
selection process.

The CNN is a powerful pattern recognition system capable of
analyzing large 2D images directly without any compression.
Therefore, PCA compression, which was necessary for the SVM
image data inputs, was not applied to the inputs of the CNN.

In the first layer of the CNN, the input image is fed to groups
of neurons with shared weights. We scan the input image with
a sliding window to get a set of sub-images. The neurons with
shared weights each look at one of these sub-images and become
active if certain feature as defined by the shared weights is
detected from it. The different groups of neurons are used to
detect different features. This process can also be viewed as
convolving the input image with a set of small image kernels,
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Input image
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max max
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Convolution layer Max-pooling layer

Input for
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Figure 4. Schematic of the first two layers in the convolutional neural network.
Left: Convolution layer; from the bottom up, the input image is convolved
with a set of image kernels, forming feature maps that show the presence of
certain features in different positions of the image. Right: Max-pooling layer;
the feature maps are compressed to smaller size by taking in only the maximum
values of adjacent pixels. The PICS CNN consists of two sets of alternating
convolution and max-pooling layers and a final artificial neural network layer.

or features, and then applying the hyperbolic tangent activation
function to form a set of feature maps. Specifically, the kth feature
map is given by

hk = tanh((Wk ∗ x) + b), (3)

where Wk is the feature kernel, x is the input image, and b is a
bias term. The number of kernels, k, is a free parameter in the
system, and it determines the richness in the representation of
the data. The second layer of the CNN is a max-pooling pro-
cess. This is a form of down-sampling that bins the 2D feature
maps and chooses the maximum value within each bin. The
main advantage is a reduction in computational complexity in
subsequent layers, though pooling also has the advantage of in-
troducing translation invariance of the feature Wk across the bin
(Boureau et al. 2010). These two steps are illustrated in Figure 4.

The output of the max-pooling layer is fed into an-
other convolution layer for feature detection and yet another
max-pooling layer. This output is fed into the fifth and final
layer, a traditional, fully connected ANN. While the previous
four layers function to locate small-scale features across the in-
put images, the final layer combines this information to detect
large-scale features and develop a global understanding of the
original image.

The CNN configurations for both the time versus phase plot
and frequency versus phase plot were the same. In the first
step (Figure 4, left panel), both CNNs take input images down-
sampled to 48 × 48 pixels and convolve them with 20 different
16 × 16 image kernels, producing 20 feature maps of size
33 × 33. The subsequent max-pooling layer (Figure 4, right
panel) divides each map into 3 × 3 boxes and compresses the
convolved image to a size 11 × 11 by taking the maximum
in each box. The second convolution layer convolves 50 8×8
image kernels shared across the 20 feature maps, resulting in
50 different 4 × 4 feature maps. A second 2 × 2 max-pooling
layer further compresses each feature map to an image of size
2 × 2. The result is an array of 50 × 4 numbers characterizing
the local, kernel-sized features of the original image. The final

layer is a traditional, fully connected ANN consisting of 500
hidden logistic units that take these 200 numbers to compute
one final score.

There are 8820 artificial neurons distributed through the 5
layers of the CNN, including the ones in the image kernels. All
neurons in this network are hyperbolic tangent functions except
the one that forms the final output, which is chosen to be a
sigmoid function in order to map onto the classification labels
0 and 1. The training of the neural net is to let these synapses
learn and store the patterns distinguishing pulsars from RFI. As
an example, the last layer has 105 weights connecting the 200
outputs of the second last layer to the 500 hidden neurons in the
last layer. Each hidden neuron takes, as input, a weighted sum
of the 200 outputs of the previous layer. All of the connection
parameters are initialized randomly and then updated through
the process of back-propagation.

The structure of the CNN is determined by the choice of
image size, kernel size, number of kernels, pooling size, and
neural network size, and these parameters are often called
neural net design or hyper-parameters. The best CNN design, as
described above, is determined through cross-validation tests.
The labeled data are randomly shuffled and split into a training
set formed from 60% of the candidates and a validation set
from the remaining 40%, and a large grid search is performed.
For each choice of design parameters, the CNN is trained and
the performance is characterized by computing its F1 score
(see Section 2.3) on the validation set. The CNN we used gives
F1 = 92% when trained and tested on the time versus phase plots
and F1 = 94% for the frequency versus phase plots (Table 1).
After optimizing the CNN design, the final AI is trained with
all training candidates in order to maximize its sensitivity. The
final performance of the PICS system is tested with a set of
completely independent GBNCC data (see Section 3).

This CNN performs well on the frequency versus phase plot
because a large fraction of RFI is narrow-band emission. For
continuous emission, this RFI shows up as a horizontal line,
while burst-like or periodic RFI appears as a small dot. This
is opposed to the broadband pulsed signal of a pulsar, which
shows up as a vertical stripe. Since the CNN excels at detecting
small-scale features, it can easily detect this form of RFI. A
second reason this classifier is the best discriminant of pulsars
is simply because there is more information in the 2D plots than
the 1D plots. For similar reasons, the algorithm can recognize
and reject burst-like RFI or signals that drift around in phase by
using the time versus phase plot.

This deep neural net is implemented using Theano (Bergstra
et al. 2010), a computation library for python that compiles
numerical expressions to run efficiently on either CPU or GPU
architectures.

3. RESULTS

We trained the PICS AI system with 3756 labeled PALFA
candidates, in which 1659 are pulsars and their harmonics and
2097 are non-pulsars. There are only a few thousand known
pulsar–harmonic candidates in PALFA but millions of non-
pulsars. We picked similar numbers of pulsars and non-pulsars
from the PALFA candidate pool as classified by other human
experts. The pulsar candidates include unique pulsars and also
the same pulsar with different beam offsets. To ensure that the
AI is sensitive to both pulsars and their harmonics, ∼40% of the
training pulsar candidates are harmonics of known pulsars.

We also manually rated how “pulsar-like” each of the four
subplots for every training candidate is regardless of the
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Table 2
The 60 Hz RFI and Its Harmonics

Frequency Range Countsb Percentagec

(Hz)a

18−19 2101 2.3%
58−62 12941 14.4%
118−121 4480 5.0%
139−140 2157 2.4%
179−181 1744 1.9%
239−241 1096 1.2%

Notes.
a The six most populous frequency ranges in the histogram
of candidates.
b Number of candidates within the given frequency range.
c Percentage of candidates within the given frequency range.

candidate’s nature. This is because some RFI candidates may
have a good pulse profile or DM curve, and we want to train the
AI to recognize those the good subplots even when the candidate
itself is not a pulsar. The first-layer classifiers are designed to
recognize patterns in individual subplots in the diagnostic plots
of the candidates. Therefore, they are trained to predict the “rat-
ings” of the subplots for the training candidates, not to predict
the classification of the candidates. In contrast, the second-layer
(LR) classifier is designed to predict whether or not a candidate
is a pulsar on the basis of the output from the first layer classi-
fiers. Thus, it is trained with the classifications of the candidates,
not with “ratings” of their subplots.

To ensure that the trained classifiers can work on new data
and to determine their best initial parameters, we performed
standard cross-validation tests (Section 2.5). We shuffled and
split the 3756 candidates into two groups: 60% for training
and 40% for validating. Furthermore, we repeated this shuffle,
split, train, and validate procedure 10 times to make sure their
performance on validation data is reliable and repeatable. The
individual first-layer classifiers score in the range 86%–94% F1
(with less than 1% rms each) on the validation data (Table 1).
The second layer of the PICS, a LR algorithm that combines
the scores from first-layer classifiers to form a consensus vote,
scored an average of 96% F1 (8% misses, 1% false positives)
on the validation data.

To further measure the AI’s performance and determine
whether it can be generalized to other surveys, we applied it
to a large set of GBNCC candidates that was never seen by the
AI system during training. Like PALFA, the GBNCC survey
uses the PRESTO search pipeline and generates candidates in
pfd format, but this survey was conducted using the Robert C.
Byrd Green Bank Telescope instead of Arecibo, so the RFI
environments of the two surveys are expected to be different;
furthermore, the GBNCC survey uses the 350 MHz receiver
instead of the 1400 MHz one, thus the DM curves of the GBNCC
candidates are expected to be slightly sharper than that of the
PALFA candidates thanks to the more significant dispersion
effect in the lower frequency band. We applied the AI to 90,008
manually labeled GBNCC candidates. An initial test showed
that the AI can sort all 56 pulsars in this data set to the top 3.8%,
and 68% of the pulsars to the top 0.16%. The first RFI appeared
in rank 136, following 29 pulsars and 106 harmonics.

An inspection of the false-positive candidates revealed many
to be harmonics of the 60 Hz power signal (see Figure 5 for an
example). Table 2 lists the six most populous frequency ranges
in a frequency histogram of all candidates, and the majority of

these candidates are likely caused by the 60 Hz power supply.
Although these frequencies comprise <1% of the frequency
domain searched by PRESTO, 24,519 (roughly 27%) of the
candidates fall into these frequency ranges. It is standard practice
to remove harmonics of 60 Hz for North American surveys; in
spite of these efforts, a significant amount of such RFI remains.
Using the image patterns in the diagnostic plots, our AI was able
to reject a majority (∼96.2%) of this RFI, with the remaining
false positives strongly resembling pulsars (see Figure 5 for an
example).

In light of this observation, we adjusted the scores of all can-
didates by using a Bayesian prior on the pulse frequency f to
reduce the score for the false-positive candidates in contami-
nated frequency bins:

P (p|f ) = P (p)

P (p) + [P (f |r)/P (f |p)]P (r)
. (4)

Here P (p) is the probability of being a pulsar as previously
scored by PICS, P (r) = 1 − P (p), while P (f |r) and P (f |p)
are the probability density functions, or likelihoods, of RFI
and pulsars in frequency. P (f |r) can be well approximated by
sampling the frequency distribution of all test candidates, which
is dominated by non-pulsar signals, especially those at 60 Hz and
its harmonics (Table 2). We approximate the prior distribution
P (f |p) by median filtering P (f |r), which removes spikes
caused by RFI and leaves a distribution that reflects the survey
sensitivity. At the harmonics of 60 Hz, P (f |r) � P (f |p), such
that P (p|f ) < P (p) and the AI score is reduced. Away from
the few affected frequency bins (Table 2), P (f |r) � P (f |p)
and the AI score is lightly affected, with P (p|f ) � P (p).

The frequencies of the test candidates are binned from 0 Hz
to 2000 Hz in steps of 0.5 Hz. Because of the limited bin size,
all slow pulsars (f < 1 Hz) are binned to the lowest two bins,
along with a lot of RFI. Since the underlying structure of the
prior distributions is not properly resolved in this domain, we
did not apply the Bayesian rules to candidates with f < 1 Hz.

Figure 6 shows the distribution of GBNCC test candidates
when sorted by P (p|f ) and summarizes the performance of the
PICS. After applying the Bayesian rule (Equation (4)), all 56
pulsars and 208 of the 221 harmonics were sorted and placed
into the top 961 (1%) of the 90,008 candidates by the PICS. The
first RFI candidate appeared in rank 187, following 45 pulsars
and 141 harmonics. The 13 harmonic candidates that were not
sifted to the top are mostly candidates with very low S/N and a
broad profile.

A blind cross-validation test was performed using pulsars and
RFI candidates collected from the PALFA survey but never seen
by the AI. We found that the same Bayesian rule (Equation (4))
that worked for the GBNCC test also clearly reduced the false
positive rate in this cross-validation test. This indicates that
the Bayesian rule can be generalized to surveys other than the
GBNCC survey. Caution must be advised, however, since a weak
pulsar candidate falling in an RFI-contaminated frequency bin
(Table 2) will be down-weighted by the Bayesian prior and
could be rejected. Fortunately, the chance of this happening is
very small, since only a few frequency bins (∼0.7%, Table 2) are
affected significantly by the prior. In light of this, the Bayesian-
rule RFI rejection is included only as an option in the PICS and
can be turned off.

Despite the size and complexity of the PICS, candidate
classification is a fast process because most of the individual
classifiers simply apply dot products. The hard part of the
computation was already done during the training phase. It took
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Figure 5. Example of a ∼60 Hz RFI signal that was ranked higher than the weakest four pulsars in the GBNCC test data.

(A color version of this figure is available in the online journal.)

Figure 6. Unfilled histogram is the distribution of AI scores of 90,008 GBNCC
candidates. The filled histogram is the AI score distribution of known pulsars.
The hatched histogram is that of the harmonics of known pulsars.

∼45 minutes to classify the 90,008 GBNCC candidates by using
a cluster of 24 2.7 GHz CPUs, ∼0.7 CPU second per candidate,
though most of the time was spent on disk I/O and not all CPUs
were used at 100% capacity. Using the same computer cluster,
the AI would be able to classify a million candidates in several
hours.

The PICS AI has been integrated into the PALFA pipeline,
such that we can query and sort candidates by using the AI rating

on the cyberska.org web platform. With the help of the AI, we
have found many promising candidates over several weeks, six
of which have been confirmed as new PALFA discoveries. Here
we list the discovery parameters of these pulsars.

1. PSR J1914+08 (Figure 2) is a 146.68 ms pulsar with a DM
of 289 pc cm−3.

2. PSR J1938+20 (Figure 7) is a 2.634 ms pulsar with a DM
of 237 pc cm−3.

3. PSR J1901+02 is a 885.24 ms pulsar with a DM of
403 pc cm−3.

4. PSR J1903+04 is a 1151.39 ms pulsar with a DM of
473 pc cm−3.

5. PSR J1930+17 (Figure 8) is a 1609.72 ms pulsar with a
DM of 232 pc cm−3.

6. PSR J1854+00 (Figure 9) is a 767.334 s pulsar with a DM
of 533 pc cm−3.

These pulsars are now the subject of ongoing timing obser-
vations by Arecibo or Jodrell Bank Observatories.

4. DISCUSSION

PICS scores the candidates with a number between 0 and
1, with a higher score corresponding to a more pulsar-like
candidate. When tested with the GBNCC data, the AI placed
100% of the pulsars and 94% of the harmonics in the top
1% (Figure 6) of ranked candidates. By rejecting 99% of the
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Figure 7. Discovery plot of PSR J1938+20.

(A color version of this figure is available in the online journal.)

candidates, the PICS can improve the speed of the candidate
classification process for a human expert by a factor of �100.
If we combine the AI with other ratings or scores such as the
S/N, the sorting efficiency can be further improved, making it
possible for a few human experts to sift through millions of
candidates. Such a system can be very useful for existing and
future pulsar surveys.

In the GBNCC test, the PICS AI showed very good perfor-
mance. However, in the top 1% of the test candidates, there
were still a few pulsars ranked below hundreds of non-pulsars.
These were pulsars with broad pulses and low S/Ns, and they
were surpassed by some strong RFI signals that also have broad
features. It seems that the PICS AI could benefit from training
with more pulsar/RFI training candidates that have broad pulse
profiles.

Despite being limited by the quantity and diversity of the
training data, the use of image-pattern-based ML in the PICS is
a novel idea and has some advantages.

The AI uses an ensemble of ML algorithms, including a deep
neural network composed of many neurons and hidden weights
that have the capability to recognize subtle or complex features.
By gathering more human-identified candidates from surveys,
we will be able to further improve the AI system. Specifically,
if a survey encounters a new kind of RFI that our system or
a method based on analytical heuristics fails to reject, we can

improve our AI by incorporating examples of these RFI into our
training data and retrain the system. Future improvements to
PICS include expanding the training set to candidates from both
PALFA and GBNCC surveys and providing input capability for
survey products from other search software. Rather broadly, by
increasing the pool of training candidates, we can improve the
accuracy of the PICS AI.

The PICS AI makes a classification based solely on image
patterns in the diagnostic plots. A caveat—and possibly a fea-
ture—is that because these plots are re-binned and normalized
to unit variance, the AI ignores the DM, period, and pulse am-
plitude differences between different candidates. Although this
lost information may be useful in some rare cases (e.g., ruling
out millisecond candidates with high DM on the basis of the
DM smearing timescale), this procedure forces PICS to learn
the universal features of pulsars (broadband, pulsed, and dis-
persed emission) and helps it adapt to other surveys for which
sensitivity in candidate DM, frequency, and signal strength may
differ. PICS is also forced to rely less on information than other
score-based systems rely on, making it a good complement to
them.

Being trained with many harmonic candidates with weak or
multi-peak pulse profiles, the PICS AI is also very good at
finding such candidates. PICS has discovered six new pulsars
since being integrated into the PALFA survey pipeline. PSR
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Figure 8. Discovery plot of PSR J1930+17.

(A color version of this figure is available in the online journal.)

J1938+20 was discovered as a very weak candidate (5.0σ
according to the version of PRESTO in the PALFA pipeline
at the time of discovery; Figure 7). This makes it the least
significant pulsar candidate confirmed by the PALFA survey.
Such a candidate probably would not have been found by a
candidate-sorting method based on the significance of the signal.
PSR J1914+08 was discovered as a multi-peaked harmonic, not
as a candidate at its fundamental frequency. Other candidate
selection methods that rely on fitting the pulse profile with a
single Gaussian curve would likely down-rate these harmonics.
Because of the presence of strong RFI, PSR J1930+17’s DM
curve (Figure 8) is significantly skewed to the left. Similarly,
PSR J1854+00’s DM curve appears to be rather shallow and also
slightly skewed. It is difficult to characterize these atypical DM
curves by using simple predesigned functional forms. However,
our ML system was able to recognize these DM patterns on the
basis of similar examples in the training data.

A caveat is that the current PICS AI is trained and tested with
data from the PALFA and GBNCC surveys, both of which have
short exposure times of several hundred seconds per pointing.
The pulsar candidates observed by these surveys were rarely
affected significantly by scintillation or binary motion. In a
survey with significantly longer exposure time, scintillation
would make the pulsar signal patchy and discontinuous in the
2D subplots, while binary motion may cause pulsar signals
in the time versus phase plot to become curved, indicating

acceleration. For surveys and systems exhibiting scintillation
and orbital acceleration, the AI will need to be retrained with
suitable candidates. Alternatively, the PICS could be trained
from candidates generated from numerical simulations that
include these effects.

Ultimately—and with enough resources—we envision a sys-
tem that adaptively trains the AI and re-scores the survey candi-
dates on the fly while human experts are classifying them. Such
an “online” system will ensure portability of the AI when the
RFI environment of the telescope slowly changes over time. Re-
markably, owing to the nature of the ML algorithms employed,
this does not require coding new heuristics to characterize any
emerging forms of RFI. One of challenges in implementing an
online learning system is that the training data will be very
imbalanced as pulsar surveys tend to find a lot more RFI than
pulsars. Lyon et al. (2013) has explored the performance of some
existing online ML algorithms in dealing with imbalanced data
streams from pulsar surveys and found promise in these meth-
ods. Whether the PICS could be adapted into a successful online
learning system will be explored in future work.
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Figure 9. Discovery plot of PSR J1854+00.

(A color version of this figure is available in the online journal.)
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