1,252 research outputs found

    Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks

    Get PDF
    Background: Genome-wide association studies of Alzheimer’s disease (AD) have identified a number of significant risk loci, the majority of which lie in non-coding regions of the genome. The lack of causal alleles and considerable polygenicity remains a significant barrier to translation into mechanistic understanding. This includes identifying causal variants and the cell/tissue types in which they operate. A fuller understanding of the cell types and transcriptional networks involved in AD genetic risk mechanisms will provide important insights into pathogenesis. Methods: We assessed the significance of the overlap between genome-wide significant AD risk variants and sites of open chromatin from data sets representing diverse tissue types. We then focussed on macrophages and microglia to investigate the role of open chromatin sites containing motifs for specific transcription factors. Partitioned heritability using LDscore regression was used to investigate the contribution of specific macrophage and microglia transcription factor motif-containing open chromatin sites to the heritability of AD. Results: AD risk single nucleotide polymorphisms (SNPs) are preferentially located at sites of open chromatin in immune cells, particularly monocytes (z score = 4.43; corrected P = 5.88 × 10− 3). Similar enrichments are observed for macrophages (z score = 4.10; corrected P < 2.40 × 10− 3) and microglia (z score = 4.34, corrected P = 0.011). In both macrophages and microglia, AD risk variants are enriched at a subset of open chromatin sites that contain DNA binding motifs for specific transcription factors, e.g. SPI1 and MEF2. Genetic variation at many of these motif-containing sites also mediate a substantial proportion of AD heritability, with SPI1-containing sites capturing the majority of the common variant SNP-chip heritability (microglia enrichment = 16.28, corrected enrichment P = 0.0044). Conclusions: AD risk alleles plausibly operate in immune cells, including microglia, and are concentrated in specific transcriptional networks. Combined with primary genetic association results, the SPI1 and MEF2 transcriptional networks appear central to AD risk mechanisms. Investigation of transcription factors targeting AD risk SNP associated regulatory elements could provide powerful insights into the molecular processes affected by AD polygenic risk. More broadly, our findings support a model of polygenic disease risk that arises from variants located in specific transcriptional networks

    Purification protocols for extracellular vesicles

    Get PDF

    Effect of expectoration on inflammation in induced sputum in α-1-antitrypsin deficiency

    Get PDF
    SummaryIt is unclear how chronic expectoration influences airway inflammation in patients with chronic lung disease. The aim of this study was to investigate factors influencing inflammation in induced sputum samples, including, in particular, chronic sputum production. Myeloperoxidase, interleukin-8, leukotriene B4 (LTB4), neutrophil elastase, secretory leukoprotease inhibitor (SLPI) and protein leakage were compared in induced sputum samples from 48 patients (36 with chronic expectoration) with COPD (with and without alpha-1-antitrypsin deficiency; AATD), 9 individuals with AATD but without lung disease and 14 healthy controls. There were no differences in inflammation in induced sputum samples from healthy control subjects and from AATD deficient patients with normal lung function but without chronic expectoration (P>0.05). Inflammation in induced sputum from AATD patients with airflow obstruction and chronic sputum expectoration was significantly greater than for similar patients who did not expectorate: Interleukin-8 (P<0.01), elastase activity (P=0.01), and protein leakage (P<0.01). The presence of spontaneous sputum expectoration in AATD patients with airflow obstruction was associated with increased neutrophilic airway inflammation in induced sputum samples. The presence of chronic expectoration in some patients will clearly complicate interpretation of studies employing sputum induction where this feature has not been identified

    Unbiased optical mapping of telomere-integrated endogenous human herpesvirus 6

    Get PDF
    Next-generation sequencing technologies allowed sequencing of thousands of genomes. However, there are genomic regions that remain difficult to characterize, including telomeres, centromeres, and other low-complexity regions, as well as transposable elements and endogenous viruses. Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) are closely related viruses that infect most humans and can integrate their genomes into the telomeres of infected cells. Integration also occurs in germ cells, meaning that the virus can be inherited and result in individuals harboring the virus in every cell of their body. The integrated virus can reactivate and cause disease in humans. While it is well established that the virus resides in the telomere region, the integration locus is poorly defined due to the low sequence complexity (TTAGGG)n of telomeres that cannot be easily resolved through sequencing. We therefore employed genome imaging of the integrated HHV-6A and HHV-6B genomes using whole-genome optical site mapping technology. Using this technology, we identified which chromosome arm harbors the virus genome and obtained a high resolution map of the integration loci of multiple patients. Surprisingly, this revealed long telomere sequences at the virus-subtelomere junction that were previously missed using PCR-based approaches. Contrary to what was previously thought, our technique revealed that the telomere lengths of chromosomes harbor ing the integrated virus genome were comparable to the other chromosomes. Taken together, our data shed light on the genetic structure of the HHV-6A and HHV-6B integration locus, demonstrating the utility of optical mapping for the analysis of genomic regions that are difficult to sequence

    Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa

    Get PDF
    Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, similar to 70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or "reactivation" of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa

    Transcriptional changes following cellular knockdown of the schizophrenia risk gene SETD1A are enriched for common variant association with the disorder

    Get PDF
    Loss of function mutations in SETD1A are the first experiment-wide significant findings to emerge from exome sequencing studies of schizophrenia. Although SETD1A is known to encode a histone methyltransferase, the consequences of reduced SETD1A activity on gene expression in neural cells have, to date, been unknown. To explore transcriptional changes through which genetic perturbation of SETD1A could confer risk for schizophrenia, we have performed genome-wide gene expression profiling of a commonly used human neuroblastoma cell line in which SETD1A expression has been experimentally reduced using RNA interference (RNAi). We identified 1,031 gene expression changes that were significant in two separate RNAi conditions compared with control, including effects on genes of known neurodevelopmental importance such as DCX and DLX5. Genes that were differentially expressed following SETD1A knockdown were enriched for annotation to metabolic pathways, peptidase regulator activity and integrin-mediated regulation of cell adhesion. Moreover, differentially expressed genes were enriched for common variant association with schizophrenia, suggesting a degree of molecular convergence between this rare schizophrenia risk factor and susceptibility variants for the disorder operating more generally

    Meaning in life in psychotherapy: The perspective of experienced psychotherapists

    Get PDF
    Objective Our goal was to explore the meaning experienced psychotherapists derive from providing psychotherapy, their beliefs about the role of meaning in life (MIL) in psychotherapy, how they worked with MIL with a client who explicitly presented concerns about MIL, and how they worked with a different client for whom MIL was a secondary and more implicit concern. Method Thirteen experienced psychotherapists were interviewed and data were analyzed using consensual qualitative research. Results Therapists derived self-oriented meaning (e.g., feeling gratified, fulfilled, connected) and other-oriented meaning (helping others, making the world a better place) from providing psychotherapy. They believed that MIL is fundamental and underlies all human concerns, including those brought to therapy. In contrast to the clients who had implicit MIL concerns, clients who explicitly presented MIL concerns were reported to have more interpersonal problems and physical problems, but about the same amount of psychological distress and loss/grief. Therapists used insight-oriented interventions, support, action-oriented interventions, and exploratory interventions to work with MIL with both types of clients, but used more exploratory interventions with implicit than explicit MIL clients. Conclusions MIL is a salient topic for experienced, existentially oriented psychotherapists; they work with MIL extensively with some clients in psychotherapy. We recommend that therapists receive training to work with MIL in therapy, and that they pay attention to MIL concerns when they conduct psychotherapy. We also recommend additional research on MIL in psychotherapy

    Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants with Neonatal Encephalopathy

    Get PDF
    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. </jats:p

    Tissue phantoms in multicenter clinical trials for diffuse optical technologies

    Get PDF
    Tissue simulating phantoms are an important part of instrumentation validation, standardization/training and clinical translation. Properly used, phantoms form the backbone of sound quality control procedures. We describe the development and testing of a series of optically turbid phantoms used in a multi-center American College of Radiology Imaging Network (ACRIN) clinical trial of Diffuse Optical Spectroscopic Imaging (DOSI). The ACRIN trial is designed to measure the response of breast tumors to neoadjuvant chemotherapy. Phantom measurements are used to determine absolute instrument response functions during each measurement session and assess both long and short-term operator and instrument reliability

    Sites of active gene regulation in the prenatal frontal cortex and their role in neuropsychiatric disorders

    Get PDF
    Common genetic variation appears to largely influence risk for neuropsychiatric disorders through effects on gene regulation. It is therefore possible to shed light on the biology of these conditions by testing for enrichment of associated genetic variation within regulatory genomic regions operating in specific tissues or cell types. Here, we have used the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) to map open chromatin (an index of active regulatory genomic regions) in bulk tissue, NeuN+ and NeuN− nuclei from the prenatal human frontal cortex, and tested enrichment of single-nucleotide polymorphism (SNP) heritability for five neuropsychiatric disorders (autism spectrum disorder, attention deficit hyperactivity disorder [ADHD], bipolar disorder, major depressive disorder, and schizophrenia) within these regions. We observed significant enrichment of SNP heritability for ADHD, major depressive disorder, and schizophrenia within open chromatin regions (OCRs) mapped in bulk fetal frontal cortex, and for all five tested neuropsychiatric conditions when we restricted these sites to those overlapping histone modifications indicative of enhancers (H3K4me1) or promoters (H3K4me3) in fetal brain. SNP heritability for neuropsychiatric disorders was significantly enriched in OCRs identified in fetal frontal cortex NeuN− as well as NeuN+ nuclei overlapping fetal brain H3K4me1 or H3K4me3 sites. We additionally demonstrate the utility of our mapped OCRs for prioritizing potentially functional SNPs at genome-wide significant risk loci for neuropsychiatric disorders. Our data provide evidence for an early neurodevelopmental component to a range of neuropsychiatric conditions and highlight an important role for regulatory genomic regions active within both NeuN+ and NeuN− cells of the prenatal brain
    • …
    corecore