22 research outputs found

    Exposure to electric and magnetic fields at intermediate frequencies of household appliances

    Get PDF
    Human exposure to electric and magnetic fields has been amply investigated in the extremely-low frequency (ELF) and radiofrequency (RF) ranges. However, research on typical emissions in the intermediate-frequency (IF) range remains limited. In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields at intermediate frequencies typically emitted by a wide range of household appliances. The emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 100 kHz, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. Use of appliances at close distance (20 cm) of certain appliances may result in a relatively high exposure, but no appliance's IF emissions exceeded the ICNIRP2010 exposure summation rule (maximum electric-and magnetic-field exposure quotients were respectively 1.00, for a compact fluorescent lamp, and 0.13, for an induction cooker)

    Measurements of intermediate-frequency electric and magnetic fields in households

    Get PDF
    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residences as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ(E) 1.0 and (E)Q(H) 0.13)

    Personal radiofrequency electromagnetic field exposure of adolescents in the Greater London area in the SCAMP cohort and the association with restrictions on permitted use of mobile communication technologies at school and at home

    Get PDF
    Personal measurements of radiofrequency electromagnetic fields (RF-EMF) have been used in several studies to characterise personal exposure in daily life, but such data are limitedly available for adolescents, and not yet for the United Kingdom (UK). In this study, we aimed to characterise personal exposure to RF-EMF in adolescents and to study the association between exposure and rules applied at school and at home to restrict wireless communication use, likely implemented to reduce other effects of mobile technology (e.g. distraction). We measured exposure to RF-EMF for 16 common frequency bands (87.5 MHz–3.5 GHz), using portable measurement devices (ExpoM-RF), in a subsample of adolescents participating in the cohort Study of Cognition, Adolescents and Mobile Phones (SCAMP) from Greater London (UK) (n = 188). School and home rules were assessed by questionnaire and concerned the school's availability of WiFi and mobile phone policy, and parental restrictions on permitted mobile phone use. Adolescents recorded their activities in real time using a diary app on a study smartphone, while characterizing their personal RF-EMF exposure in daily life, during different activities and times of the day. Data analysis was done for 148 adolescents from 29 schools who recorded RF-EMF data for a median duration of 47 h. The majority (74%) of adolescents spent part of their time at school during the measurement period. Median total RF-EMF exposure was 40 μW/m2 at home, 94 μW/m2 at school, and 100 μW/m2 overall. In general, restrictions at school or at home made little difference for adolescents’ measured exposure to RF-EMF, except for uplink exposure from mobile phones while at school, which was found to be significantly lower for adolescents attending schools not permitting phone use at all, compared to adolescents attending schools allowing mobile phone use during breaks. This difference was not statistically significant for total personal exposure. Total exposure to RF-EMF in adolescents living in Greater London tended to be higher compared to exposure levels reported in other European countries. This study suggests that school policies and parental restrictions are not associated with a lower RF-EMF exposure in adolescents

    Standardising pollen monitoring:Quantifying confidence intervals for measurements of airborne pollen concentration

    No full text
    Measurement of atmospheric pollen concentrations is inexact, yet pollen concentrations are universally reported without estimate of accuracy. These imprecise values are nevertheless used for modelling, forecasting and public health decision-making. Estimation of the variability in reported pollen concentrations would help resolve associations between weather and pollen aerobiology as well as associations between pollen exposure and health. For any given daily atmospheric pollen level, a statistical variability would be expected in the set of possible measures. This variability is introduced and compounded by many factors including human error, classification error or instrument variability, as well as variability derived from strategies used to count and scale the airborne pollen sample. Here, we performed numeric simulations of pollen deposition and modelled the variability in contemporary pollen density estimates. Statistical distribution of the mean and variance of these simulated counts was compared with an existing pollen count dataset. Both simulations and actual pollen data showed that a significant range of atmospheric pollen concentrations could be inferred from the same daily pollen collection. The range of possible concentrations varied both with the atmospheric pollen density and with the portion of the daily pollen sample that is counted. Furthermore, pollen concentration data were shown to be non-normal and heteroscedastic, which has implications for a variety of tests (e.g. ANOVA), for regression analysis, and for pollen forecasting and forecast verification. These results reinforce the importance of counting as much of the collected pollen impaction surface as feasible to minimise the uncertainty in reported pollen levels. The outcomes of this study suggest that confidence intervals for daily pollen concentrations should be reported.</p

    Are Exposures to Multiple Frequencies the Key to Future Radiofrequency Research?

    No full text
    There is an extensive literature investigating possible effects of exposure to radiofrequency (RF) electromagnetic fields associated with mobile phone technologies. This has not identified any public health risks with any degree of certainty. Some epidemiological studies have observed associations between heavy users of mobile phones and some types of cancer, but animal studies do not support this association, although a few studies have reported increased tumor yields. However, there is a crucial difference between epidemiology studies and laboratory work in terms of signals investigated: most people are exposed to a complex mixture of frequencies and signals at varying intensities, whereas the majority of animal studies have been performed using a single frequency or intensity. Whether this might explain the differences in outcome will be discussed, and whether there is a need for additional laboratory investigations that reproduce more accurately realistic exposure conditions will be considered
    corecore