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1. Introduction 

Although ambient levels of radiofrequency (RF) electromagnetic fields (EMF) generally encountered in 

everyday life are well below established limits (ICNIRP, 1998) and thus not conclusively linked to 

adverse health effects (due to heating), there is a concern that long-term exposure at low levels may be 

associated with various non-specific physical symptoms (Baan et al., 2011; Baliatsas et al., 2015) and 

ecological effects on fauna and flora (Cucurachi et al., 2013). 

A large-scale assessment of the effects of RF-EMF on health or on ecology requires the quantification 

of the ambient RF-EMF levels over areas too vast to cover with conventional measurement methods, 

i.e., personal exposimeter measurement surveys (Bolte and Eikelboom, 2012; Frei et al., 2009, 2010; 

Joseph et al., 2010a; Viel et al., 2009) or spot measurements (Joseph et al; 2010b) potentially extended 

with an interpolation scheme (Aerts et al., 2013a,b). Furthermore, RF exposure modelling, using 

software packets such as NISmap (Bürgi et al., 2010 Beekhuizen et al., 2013), requires accurate and up-

to-date base station data and a detailed map of the locations and dimensions of the buildings in the 

assessed area, which is not always available. 

However, recently, various mobile measurement systems have been tested (Bolte et al., 2016; Estenberg 

and Augustsson, 2014; Tell and Kavet, 2014). For example, Bolte et al. (2016) have shown that, although 

initially built with the purpose of spectrum regulation (CFRS Ltd., 2009; Schiphorst and Slump, 2010), 

the mobile measurement systems used by the Radiocommunications Agency in the Netherlands, which 

consists of spectrum analysers with external antennas mounted on cars, are capable of accurately 

measuring RF exposure over large geographic areas in a relatively short time, potentially making them 

a suitable tool for large-scale RF-EMF exposure assessment. They found that exposure assessments 

through car-mounted measurements are at least similar in quality to assessments involving exposure 

modelling and better than those involving body worn exposimeter data due to the absence of the body 

shielding effect. 

This study continues the effort of Bolte et al. (2016) and investigates, for the first time, the RF-EMF 

exposure related information that can be deduced for an arbitrary geographical area based on 

measurements on the roads encircling the area. To achieve this, we interpolated the RF exposure in five 

distinct (sub)urban areas using car measurement data collected along the (semi-)closed loops encircling 

the areas and validated the results with analogous measurements on a street grid within the area. The 

various outcomes helped to define the characteristic traits of an area (size and shape, and building 

characteristics) for this type of modelling methodology to offer valid results. Then we determined to 

what extent the interpolation can be improved by adding inner-area measurement samples, thus 

extending the methodology for larger and less ideal areas. 

 



2. Materials and methods 

2.1. Measurements 

For this study, we used measurements reported in a previous study (Bolte et al., 2016) (in particular, the 

“RFeye left” measurements). 

Our data are derived from measurements at two frequency bands for mobile-phone downlink 

communication (i.e., signals from base stations to mobile phones) using the Global System for Mobile 

Communications (GSM) standard: GSM900 (925-960 MHz) and GSM1800 (1805-1880 MHz). The 

measurements were performed in five geographical areas in two cities (Cambridge, the United Kingdom,  

during the period 14th-16th May 2013, and Amersfoort, the Netherlands, on 22nd October 2013), the 

areas ranging in size between 0.5 and 2.5 km2 (Table 1). The measurement system consisted of an 

antenna mounted on a car rooftop connected to an RFeye measurement unit, comprising an integrated 

spectrum analyser with built-in GPS tracker of type Adapt AD-850 (Adapt Mobile Ltd., London, UK) 

and a data storage facility (CFRS Ltd., Cambridge, UK).  The measurement uncertainty of the RFeye 

unit is 2.5 dB. 

 

Area A P RC ninner nring darea dinner 

Amersfoort-City 0.63 km2 3.2 km 79% 90 103 139 m 155 m 

Amersfoort-Industrial 1.08 km2 4.7 km 63% 116 141 155 m 157 m 

Amersfoort-Residential 0.54 km2 4.5 km 100% 187 168 88 m 95 m 

Cambridge-City 2.44 km2 6.5 km 100% 145 278 260 m 307 m 

Cambridge-Residential 0.91 km2 5.0 km 100% 177 184 132 m 142 m 

Table 1: Area statistics: A = area bounded by the ring route, P = perimeter of the ring route (if not closed, the ring route was 

artificially closed to calculate A and P), RC = ringclosedness, ninner = number of inner data points, nring = number of ring data 

points, darea = average minimum distance between inner area and ring, and dinner = average minimum distance between inner 

data points and ring (distances are calculated between grid tile centres). 

 

In both cities, a number of circular loops were defined; three in Amersfoort (one closed ring) (Figure 1 

and Table 1), and two in Cambridge (both closed rings) (Figure 2 and Table 1). The car-mounted 

measurement system was set up to sample the power density in the two GSM frequency bands along 

these (ring) routes, as well as along an additional (inner) route selected within each enveloped area 

(Figures 1-2), while maintaining a maximum speed of 30 km/h. The RFeye performed 8 full sweeps 

every 2 s, and was set to record in standard instantaneous peak mode as used by the 

Radiocommunications Agency (RCA) during spectrum regulation measurements, which means that it 

retains the maximum value out of the 8 sweeps (Bolte et al., 2016). The circular routes were driven at 

least twice (in both directions), while the inner route was covered only once.  

 



 

Figure 1. Amersfoort area. Three regions in Amersfoort, The Netherlands, with car measurements along ring (blue) and inner 

(red) roads. “Inner” measurements outside the area demarcated by the ring road were removed from the inner data set (I). 

 

Figure 2. Cambridge area. Two regions in Cambridge, the United Kingdom, with car measurements along ring (blue) and 

inner (red) roads. “Inner” measurements outside the area demarcated by the ring road were removed from the inner data set 

(I). 

Along each route, the measurement samples were pooled in tiles of 35 by 35 metres (m) (i.e., a number 

of 816 tiles per km2) from a grid superimposed on each area. At 30 km/h, per tile crossing 2 to 3 

measurements were obtained per tile, and the arithmetic mean was chosen to represent the power density 

at the centre of that tile. For each area and signal, the results of each route were stored in separate data 

sets: inner (I) and ring (R). Before further analysis, supposedly inner measurement data that coincided 



with the ring trajectory or were outside the area demarcated by R were removed from I. It should further 

be noted that all distances (such as darea and dinner in Table 1) mentioned in this paper are calculated 

between the centres of the considered tiles. The minimum distance achievable between two points is 

thus 35 m. 

2.2. Modelling 

To determine the specific knowledge deducible on the RF-EMF exposure in a certain geographical area 

using the aforementioned type of measurement data, we interpolated the power density between the 

centre points on the 35 by 35 m grid bounded by the ring roads (Figures 1 and 2), and compared (1) the 

distribution of the interpolated values with the distribution of the inner-area measurements (I) (Section 

Results – Grid Statistics), and (2) the interpolated with the measured power densities at inner-area 

measurement locations (Section Results – Validation). 

For the interpolation, ordinary Kriging was used – as the power density is lognormally distributed, we 

first log-transformed the measurements – and fitted a spherical variogram model with nugget 0 to the 

samples. Our starting point in each area was the ring data set, R. Minimal models, without additional 

inner data, are further denoted as MR. Then, randomly selected I data samples were gradually added to 

upgrade the models, always retaining a random 25% subset of I containing for validation (hence, the 

maximum models, denoted as Mm, were built using all available I (75%) and R data.  

To account for the uncertainty due to the limited number of samples (between 170 and 386 for 

interpolation and 23 to 47 for validation), we repeated each interpolation stage 200 times – each run, a 

new variogram model was fitted to the data – using random subsets of I for interpolation (max. 75%) 

and validation (25%), and averaged the interpolation and validation results (Tables 3 and 4) over all 

runs. 

3. Results 

3.1. Measurements 

A summary of the measurements performed in the considered areas (aggregated per tile) can be found 

in Table 2. A higher power density was obtained for GSM900 (a geometric average of 60.6 µW/m2 

(0.15 V/m) within the inner areas, and 122 µW/m2 (0.21 V/m) on the enveloping ring trajectories) 

compared to GSM1800 (32.9 - 40.9 µW/m2 or 0.11 - 0.12 V/m). The geometric standard deviation 

ranges between 2.80 and 8.40, and is on average about 5, with no apparent difference between signals 

and outer and inner measurements. In most cases, a large difference in power density is observed 

between ring and inner area. The highest discrepancy is found in Amersfoort-City, with a median power 

density on the ring of approximately 20 (GSM900) to 40 (GSM1800) times higher than within the inner 

area. In the other regions, the difference in median power density is at most a factor 2. 

 



Area 

INNER RING (µW/m2) 

Min. – max. 

(µW/m2) 

Avg. 

(µW/m2) 

Sd.  

(-) 

Median 

(µW/m2) 

Min. – max. 

(µW/m2) 

Avg. 

(µW/m2) 

Sd. 

(-) 

Median 

(µW/m2) 

GSM900         

Amersfoort-City 2.32 - 1862 30.8 3.66 28.1 36.3 - 4433 404 2.80 474 

Amersfoort-Industrial 16.4 - 2410 221 3.68 235 4.55 - 2692 155 5.15 223 

Amersfoort-Residential 1.03 - 287 16.7 4.14 12.8 3.43 - 2133 35.5 5.22 20.0 

Cambridge-City 0.91 - 2296 23.2 6.22 18 0.44 - 3940 10.8 7.22 7.85 

Cambridge-Residential 0.41 - 1619 8.76 7.03 4.99 0.31 - 631 3.44 4.89 2.71 

Average 4.21 – 1695 60.6 4.95 59.8 9.01 – 2766 122 5.06 146 

GSM1800         

Amersfoort-City 0.44 – 1069 4.14 3.29 4.05 1.36 – 2452 112 4.34 160 

Amersfoort-Industrial 6.44 – 3115 138 3.80 148 3.38 – 1117 65.1 4.29 71.8 

Amersfoort-Residential 0.02 – 143 0.97 4.85 0.87 0.08 – 545 1.80 8.40 1.54 

Cambridge-City 0.61 – 8952 15.3 6.74 10.5 0.44 – 1405 12.7 4.86 11.0 

Cambridge-Residential 0.35 – 662 6.17 5.87 4.29 0.47 – 1394 10.3 5.83 6.13 

Average 1.57 – 2788 32.9 4.91 33.5 1.15 – 1983 41.9 5.54 50 

Table 2: Power density measurements (aggregated per tile) of GSM900 (900 MHz band) and GSM1800 (1800 MHz band) 
[Bolte et al., 2016]. (Avg. = the geometric mean; Sd. = the geometric standard deviation.) 

 

3.2. Modelling 

As expected from the dissimilarity between R and I power density distributions (Table 2), the ring-only 

models MR seem incapable of accurately predicting the inner-area power density distribution (Table 3), 

even more so for GSM1800 than for GSM900. However, disregarding the huge Amersfoort-City errors, 

the relative error in the prediction of the median power density lies between -3.6 dB (-57%) and +2.7 dB 

(+87%); in comparison, the measurement uncertainty of a typical spot measurement setup is +/- 3 dB 

(Joseph et al., 2010b). 

The trend observed when comparing grid statistics continues in the analysis of the validation (Table 4). 

Considering the overall sparsity of data, the ring-only models MR perform pretty well. Again 

disregarding Amersfoort-City, we found correlation parameters ranging between bad and moderate as 

well as low relative errors (always positive, and less than +2 dB), with the best scoring models in both 

Residential areas (ρ = 0.7 - 0.8, κ = 0.5). 



Area 

MR prediction  

Min. – max. 

(µW/m2) 

Avg. 

(µW/m2) 

Sd. 

(-) 

Median 

(µW/m2) 

GSM900     

Amersfoort-City 47.5 – 2980 285 1.72 306 

Amersfoort-Industrial 7.08 – 1656 157 2.75 169 

Amersfoort-Residential 5.10 – 1045 25.5 2.87 21.1 

Cambridge-City 0.69 – 1987 10.3 3.50 8.43 

Cambridge-Residential 0.36 – 385 3.91 3.45 2.94 

Average 12.1 – 1611 96.3 2.86 101 

GSM1800     

Amersfoort-City 2.15 – 825 48.2 3.42 54.0 

Amersfoort-Industrial 5.46 – 464 67.1 1.68 64.0 

Amersfoort-Residential 0.11 – 263 1.66 3.92 1.63 

Cambridge-City 1.21 – 397 10.4 2.18 10.6 

Cambridge-Residential 0.93 – 413 9.09 2.99 7.69 

Average 1.97 – 472 27.3 2.84 27.6 

Table 3: GSM900 and GSM1800 power density distributions of the ring-only interpolation models MR, averaged over 200 
interpolation runs. Predicted values are assigned to the grid tile centres. (Avg. = the geometric mean; Sd. = the geometric 
standard deviation.) 

 

 ρ κ sensitivity specificity Δrel 

GSM900      

Amersfoort-City 0.17 (0.18) 0.03 (0.16) 0.04 (0.14) 0.90 (0.01) 18.3 (3.88) 

Amersfoort-Industrial 0.61 (0.13) 0.24 (0.14) 0.29 (0.22) 0.92 (0.03) 0.35 (0.25) 

Amersfoort-Residential 0.81 (0.04) 0.52 (0.11) 0.41 (0.20) 0.93 (0.02) 0.79 (0.20) 

Cambridge-City 0.70 (0.10) 0.36 (0.15) 0.70 (0.19) 0.96 (0.02) -0.03 (0.14) 

Cambridge-Residential 0.77 (0.05) 0.46 (0.11) 0.38 (0.21) 0.94 (0.02) -0.00 (0.13) 

Average 0.61 0.31 0.35 0.93 4.02 

GSM1800      

Amersfoort-City 0.31 (0.18) 0.17 (0.18) 0.06 (0.16) 0.91 (0.02) 30.3 (7.95) 

Amersfoort-Industrial 0.21 (0.15) 0.16 (0.13) 0.05 (0.13) 0.89 (0.02) 0.37 (0.35) 

Amersfoort-Residential 0.76 (0.05) 0.48 (0.11) 0.63 (0.20) 0.96 (0.02) 1.22 (0.34) 

Cambridge-City 0.43 (0.14) 0.13 (0.13) 0.16 (0.17) 0.91 (0.03) 0.17 (0.20) 

Cambridge-Residential 0.72 (0.06) 0.48 (0.11) 0.37 (0.20) 0.94 (0.02) 1.41 (0.34) 

Average 0.49 0.31 0.27 0.92 6.40 

Table 4: Validation analysis of ring-only models MR (for GSM900 and GSM1800). All parameters are averaged over 200 

interpolation runs and standard deviations are given between brackets. (ρ = Spearman’s correlation coefficient, κ = Cohen’s 

kappa (unweighted), and Δrel = relative error (modelled power density / measured power density - 1); cut-offs for calculation 

of κ, sensitivity and specificity are at 50th and 90th percentiles.) 



 

 
(a) 

 

(b) 

Figure 3: Kriging interpolation results. (a) Spearman’s rank correlation coefficient ρ and (b) the relative error Δrel as a function 

of the minimum distance dm between validation and interpolation points. The outer right data points for each area are the MR
 

results (no additional inner data added). When adding more inner data samples to the interpolation process, dm decreases. 

Other correlation parameters (e.g., Cohen’s kappa) follow the same trend as shown in (a). (GSM = GSM900; DCS (Digital 

Cellular System) = GSM1800). 

 



To determine the extent to which the predictive power of our interpolation models can be improved, we 

added measurements from the inner area (I data set). The obvious way to analyse the influence of the 

inner data would be to show the evolution of the validation parameters as a function of the amount of 

inner samples (i.e., the percentage of inner area covered by measurements). However, due to the nature 

of the measurements, our validation data cannot be viewed completely independent of the kriged data, 

as they’re on the same trajectory through the inner part of the area (Figures 1 and 2). Inner area coverage 

numbers would thus be useless as a measure. Furthermore, as a guideline for determining the type of 

enclosed area well suited to apply our methodology, the average minimum distance between the sample 

set and the interpolated area (dm) would be the most interesting measure. As shown in Figure 3, the 

additional inner samples boost the correlation parameters (between +6%, Amersfoort-Residential, and 

+275%, Amersfoort-City) and reduce the errors (up to -2800% in Amersfoort-City), as was expected. At 

the minimum achievable dm (35 m or 1 tile) Spearman coefficients of 0.6 - 0.95 (not shown: 

κ = 0.3 - 0.8) and relative errors of approximately +50% (+1.8 dB) are attained. 

 

4. Discussion 

The success of the ring-only models MR in the Residential areas can be attributed to their elongated 

shapes (Figures 1 and 2), allowing over the whole inside area interpolation based on two close-by sides. 

The Amersfoort-Industrial area, on the other hand, although an elongated trapezium shaped area as well, 

misses one long edge of its circumference (about one third) in its ring data set, which results in inferior 

interpolation models (Table 4). The moderate interpolation results for GSM900 can be explained by the 

coincidental similarity between ring and inner measurement distributions (Table 2). 

The worst performing MR are the Amersfoort-City models. Amersfoort-City, a slightly flattened circle, 

misses a fifth of its circumference, but the completeness of the ring is clearly not the main factor. After 

closer inspection of the area, we believe its unsatisfactory performance is mainly caused by the limited 

sampling strategy. Amersfoort-City comprises a medieval centre with narrow streets and relatively high, 

dense buildings surrounded by a broad ring road (Figure 1). This ring road provides R, while I consists 

mainly of a sole circle within the centre running parallel and is practically unconnected to the 

surrounding ring road, with a canal on the inner side and high buildings on the outer. These structural 

factors effectively shield the inner from the ring measurements, rendering them physically independent. 

Furthermore, the opposite is true for Cambridge-City, where the open character of the area mitigates the 

distance effect on the interpolation results (Table 1; its inner area is, on average, much farther away than 

in the other regions). 

After adding inner-area measurements to the interpolation models, the difference in results between the 

considered areas can still be significant, even when the same dm is reached (Figure 3; e.g., Amersfoort-

City vs. Cambridge-City), due to the factors explained in the previous section: a non-closed perimeter 



and structural factors. However, for comparable areas such as Amersfoort-Residential, Cambridge-City, 

and Cambridge-Residential the results tend to align well. While the initial MR results of Cambridge-City 

and to a lesser extent of Cambridge-Residential were meagre due to their respective sizes, the additional 

information from the inside area results in a steady increase in predictive power, and at an average dm 

of about 100 m (i.e., the initial dm of Amersfoort-Residential’s MR), the validation results are satisfactory 

(ρ = 0.8 - 0.9, κ = 0.5 - 0.6, Δrel < 3.5 dB) as well as remaining relatively unchanged by further 

additional inner sampling (Figure 3). 

Furthermore, even with decreasing dm, the models in Amersfoort-City and Amersfoort-Industrial 

(GSM1800) remain inadequate (Figure 3). For Amersfoort-Industrial, we believe that closing the ring 

would have solved the issue, as it would reduce the chance that a highly-exposed region on one side of 

the area is overlooked. For Amersfoort-City, however, the solution might be less straightforward. As 

mentioned in the previous section, structural factors (specifically for MR) as well as the inner sampling 

strategy (for enhanced models) seem to be the main causes of the models’ failure. We suggest that adding 

a sufficient amount of inner samples and performing the measurements in regions more physically 

connected to the ring would yield better interpolation results. Although, due to the very nature of these 

areas, it is unlikely that the results would be as good as in other, more open areas (e.g., both Residential 

areas). 

On a side note, GSM1800 models seem to perform worse than GSM900 models, which might be due to 

its smaller wavelength. Moreover, for all model types, the average relative error is positive (Figure 3(b)), 

indicating an overestimation effect of the interpolation.  

4.1. Strengths and limitations 

In this paper we suggested an interpolation methodology to assess the RF-EMF exposure in large 

outdoor areas based on car-mounted measurements along the surrounding roads. The validity of such 

measurements in RF-EMF exposure assessment has previously been considered by Bolte et al. (2016). 

The aim here was to develop a means to assess the environmental RF exposure for larger areas. 

In areas the size and shape of Amersfoort-Residential (with an average minimum distance of the 

encircled inner area to the edge of the area of less than 100 m), our methodology can readily be applied 

when the measured ring route is closed. In this case, a Spearman coefficient of 0.8, a κ of 0.5, and a 

specificity and sensitivity of respectively 0.94 and 0.50 can be attained while keeping the relative error 

below 3.5 dB. In larger or non-ideal areas, additional inner measurements are recommended. Overall, 

we advise a maximum minimum distance dm of 100 m in the case of relatively open areas with mainly 

low, (semi-)detached buildings (Figure 3). 

Compared to other RF-EMF exposure modelling techniques, the combination of our proposed method 

with the measurement method of Bolte et al. (2016) provides reasonable results. For example, after 



validation in five areas, the NISmap model for GSM900 by Beekhuizen et al. (2013) yielded Spearman 

coefficients of 0.71 to 0.85 and a relative error up to -2.5 dB, results that are none too far from the 

predictive capacity of our MR. Further comparison can be found in Aerts et al. (2013a), in which 

Spearman coefficients of 0.54 - 0.86, non-weighted κ’s of 0.17 - 0.44, sensitivities of 0.25 - 0.67, and 

specificities of 0.88 - 0.96 are reported. However, while computer models such as NISmap are capable 

of estimating exposure at various heights, interpolation models based on car-mounted measurement data 

are limited to the height of the car roof, which is roughly 1.8 m above ground level. 

The low sensitivities obtained for some MR (Table 4) suggest that highly-exposed regions within the 

area were missed by the ring measurements. As this is vital knowledge for any risk assessment, it is 

important that we take care to close the ring and to oversample in dense regions, both to reduce the 

chance of missing exposure hotspots. 

The measurement data are subject to a number of potential uncertainties. Measurement uncertainties can 

arise due to the measurement setup and variations in the received power (e.g., due to temporal variation 

or small-scale fading). Also, when aggregating the measurements in tiles, some measurements might be 

erroneously assigned to a neighbouring tile, due to the combination of the inherent spatial inaccuracy of 

the GPS tracking system and the possible temporal discrepancy between GPS and RFeye systems, which 

can amount to a spatial inaccuracy of the measurement points of several meters. Neighbouring tiles thus 

become more similar, which would lead to smoothing and an overestimation of the correlation metrics. 

The latter uncertainty is an inherent issue to mobile measurements and is difficult to resolve. However, 

averaging over several measurements per tile, we believe its influence on our results is not significant.  

Additionally, the limited number of samples used for interpolation and validation can weaken our 

conclusions (although, compared to other measurement-based studies, the numbers are quite high). We 

accounted for this by repeating the interpolation step a number of times and averaging the validation 

results. The inaccuracy of the results is described by the standard deviation (Table 4). 

Although the two downlink signals we focused on, i.e., GSM900 and GSM1800, represent the dominant 

contributions to the outdoor RF exposure (Joseph et al., 2010a), there is an abundance of other RF-EMF 

signals that have to be taken into account for a full assessment of the outdoor exposure, such as Universal 

Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), Frequency Modulation 

(FM) radio, and Wireless Fidelity (Wi-Fi). However, these signals can be assessed using the same 

method (though at different measurement settings (Bolte et al., 2016)), keeping in mind the possible 

inferior results for higher frequencies (important for UMTS and Wi-Fi). Moreover, as we presented here 

an outdoor exposure assessment methodology, we can only account for 12.5% of the total human 

exposure (Bolte and Eikelboom, 2012), as people typically spend 18 h or more indoors. However, in 

studies on effects on flora and fauna, the presented method will offer a more representative exposure 

assessment. 



The main strength of our methodology is the fact that mobile measurements spanning nationwide road 

grids are readily available on an annual basis. Thus, all that needs to be done is collect and interpolate 

the data, and, if necessary (such as in enclosed areas larger than 1 km2 or in very densely populated 

areas), perform some additional measurements, e.g., using a smart sampling scheme such as in Aerts et 

al. (2013a). While it might not be feasible to account for very large contiguous areas with scarce 

measurement coverage, it should be possible to use the presented methodology in longitudinal 

epidemiological studies in specific neighbourhoods, towns, or cities. 

 

5. Conclusions 

In this paper we proposed a methodology to assess environmental RF exposure at street level for larger 

areas using car-mounted measurements, data that are often available through nationwide spectrum 

regulation measurements. We concluded that our methodology can be equally successfully applied 

(ρ = 0.8, κ = 0.5, Δrel < 3.5 dB) on a data set featuring a closed route around a decently sized area 

(~ 1 km2, with an average minimum distance of the encircled area to the ring of less than 100 m), 

containing mainly low, detached buildings. Additionally, in larger areas, additional sampling is advised, 

lowering the average minimum distance between the measurement samples and interpolated area to at 

most 100 m, to achieve the same level of accuracy. 
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