28 research outputs found

    A scenario of mitochondrial genome evolution in maize based on rearrangement events

    Get PDF
    Background: Despite their monophyletic origin, animal and plant mitochondrial genomes have been described as exhibiting different modes of evolution. Indeed, plant mitochondrial genomes feature a larger size, a lower mutation rate and more rearrangements than their animal counterparts. Gene order variation in animal mitochondrial genomes is often described as being due to translocation and inversion events, but tandem duplication followed by loss has also been proposed as an alternative process. In plant mitochondrial genomes, at the species level, gene shuffling and duplicate occurrence are such that no clear phylogeny has ever been identified, when considering genome structure variation. Results: In this study we analyzed the whole sequences of eight mitochondrial genomes from maize and teosintes in order to comprehend the events that led to their structural features, i.e. the order of genes, tRNAs, rRNAs, ORFs, pseudogenes and non-coding sequences shared by all mitogenomes and duplicate occurrences. We suggest a tandem duplication model similar to the one described in animals, except that some duplicates can remain. Thi

    Plant mitochondrial genome evolution. : a comparative genomic approach in Zea mays and Beta vulgaris

    No full text
    L'étude de l'évolution des génomes peut être abordée par différentes stratégies. Généralement, les analyses reposent sur les polymorphismes de séquences. Cependant, il existe des génomes dont le taux de mutation est très faible et dont la principale source de polymorphisme provient de l'arrangement différent de leurs gènes le long des chromosomes. Les évènements de réarrangements chromosomiques deviennent alors les seuls marqueurs utilisables pour retracer l'évolution de ces génomes. Nous nous sommes intéressés dans ce travail à l'analyse de l'évolution des génomes mitochondriaux d'espèces végétales au niveau de leur structure. En effet, ces génomes sont caractérisés par un faible taux de mutation et un taux élevé de réarrangements. Cette étude s’est portée à un niveau intraspécifique afin de limiter le nombre de réarrangements à analyser et sur deux espèces : Zea mays, le maïs, et Beta vulgaris, la betterave. Il s'avère, qu'en plus du polymorphisme de structure, ces génomes contiennent un grand nombre d'éléments dupliqués. Or les outils d'analyse d'évènements de réarrangements ne permettent pas d'inclure les évènements de duplication autrement qu'en distinguant les paralogues des orthologues, ce qu'il est particulièrement difficile à réaliser ici, du fait que les dupliqués sont identiques en séquence. Nous avons ici établi une stratégie basée sur l'hypothèse que les éléments dupliqués proviennent de duplications en tandem, permettant la reconnaissance, le tri et la distinction des éléments dupliqués. Cette méthode nous a conduits à proposer une histoire évolutive basée sur des réarrangements congruente avec les phylogénies de séquences. Les comparaisons entre génomes mitochondriaux de maïs et betteraves nous ont permis de montrer que des mécanismes évolutifs différents sont à l’origine de la diversité génomique observée. Nous avons également observé des différences évolutives entre les génomes à un niveau intraspécifique soulevant le problème d'échantillonnage lorsque l'on veut comparer des génomes à un niveau interspécifique.Several methods can be used to study genome evolution. Most of the time, genome evolution isstudied through nucleotide sequence polymorphism. However, in some species, mutation rate is lowand polymorphisms are mainly caused by chromosomal rearrangements. In such a case, chromosomalrearrangement is the only informative marker to study genome evolution. In this study, we focused onplant mitochondrial genome evolution at the structural level. Plant mitochondrial genomes have beendescribed as highly rearranged, but no study has been conducted on their rearrangement evolution.We chose to analyze the diversity of plant mitochondrial genomes at the intraspecific level to workon a short evolutive scale, limiting rearrangement events among genomes. The study was conductedon two species : Zea mays and Beta vulgaris . Moreover, besides structural polymorphisms, plantmitochondrial genomes contain large number of duplicated elements which are not taken into accountby rearrangement tools if orthologous and paralogous relations are not established. Based on thehypothesis that the duplicated elements were caused by tandem duplication events, we proposed anew approach to find, sort and differentiate duplicated elements. This method led to phylogenies basedon rearrangement events consistent with phylogenies based on nucleotide sequences. The comparisonof genome evolution between maize and beet allowed us to show the existence of different evolutionhistories and mechanisms between these two species. We also observed evolutionary differences atthe intraspecific level, raising the question of sampling strategy when genomes are compared at theinterspecific level

    Évolution des génomes mitochondriaux de plantes : approche de génomique comparative chez Zea mays et Beta vulgaris

    No full text
    Several methods can be used to study genome evolution. Most of the time, genome evolution is studied through nucleotide sequence polymorphism. However, in some species, mutation rate is low and polymorphisms are mainly caused by chromosomal rearrangements. In such a case, chromosomal rearrangement is the only informative marker to study genome evolution. In this study, we focused on plant mitochondrial genome evolution at the structural level. Plant mitochondrial genomes have been described as highly rearranged, but no study has been conducted on their rearrangement evolution. We chose to analyze the diversity of plant mitochondrial genomes at the intraspecific level to work on a short evolutive scale, limiting rearrangement events among genomes. The study was conducted on two species : Zea mays and Beta vulgaris. Moreover, besides structural polymorphisms, plant mitochondrial genomes contain large number of duplicated elements which are not taken into account by rearrangement tools if orthologous and paralogous relations are not established. Based on the hypothesis that the duplicated elements were caused by tandem duplication events, we proposed a new approach to find, sort and differentiate duplicated elements. This method led to phylogenies based on rearrangement events consistent with phylogenies based on nucleotide sequences. The comparison of genome evolution between maize and beet allowed us to show the existence of different evolution histories and mechanisms between these two species. We also observed evolutionary differences at the intraspecific level, raising the question of sampling strategy when genomes are compared at the interspecific level.L'étude de l'évolution des génomes peut être abordée par différentes stratégies. Généralement, les analyses reposent sur les polymorphismes de séquences. Cependant, il existe des génomes dont le taux de mutation est très faible et dont la principale source de polymorphisme provient de l'arrangement différent de leurs gènes le long des chromosomes. Les événements de réarrangements chromosomiques deviennent alors les seuls marqueurs utilisables pour retracer l'évolution de ces génomes. Nous nous sommes intéressés dans ce travail à l'analyse de l'évolution des génomes mitochondriaux d'espèces végétales au niveau de leur structure. En effet, ces génomes sont caractérisés par un faible taux de mutation et un taux élevé de réarrangements. Cette étude s'est portée à un niveau intraspécifique afin de limiter le nombre de réarrangements à analyser et sur deux espèces : Zea mays, le maïs, et Beta vulgaris, la betterave. Il s'avère, qu'en plus du polymorphisme de structure, ces génomes contiennent un grand nombre d'éléments dupliqués. Or les outils d'analyse d'événements de réarrangements ne permettent pas d'inclure les événements de duplication autrement qu'en distinguant les paralogues des orthologues, ce qu'il est particulièrement difficile à réaliser ici, du fait que les dupliqués sont identiques en séquence. Nous avons ici établi une stratégie basée sur l'hypothèse que les éléments dupliqués proviennent de duplications en tandem, permettant la reconnaissance, le tri et la distinction des éléments dupliqués. Cette méthode nous a conduits à proposer une histoire évolutive basée sur des réarrangements congruente avec les phylogénies de séquences. Les comparaisons entre génomes mitochondriaux de maïs et betteraves nous ont permis de montrer que des mécanismes évolutifs différents sont à l'origine de la diversité génomique observée. Nous avons également observé des différences évolutives entre les génomes à un niveau intraspécifique soulevant le problème d'échantillonnage lorsque l'on veut comparer des génomes à un niveau interspécifique

    Évolution des génomes mitochondriaux de plantes (approche de génomique comparative chez Zea mays et Beta vulgaris)

    No full text
    L'étude de l'évolution des génomes peut être aborde e par différentes stratégies. Généralement, les analyses reposent sur les polymorphismes de séquences. Cependant, il existe des génomes dont le taux de mutation est très faible et dont la principale source de polymorphisme provient de l'arrangement différent de leurs gènes le long des chromosomes. Les évènements de réarrangements chromosomiques deviennent alors les seuls marqueurs utilisables pour retracer l'évolution de ces génomes. Nous nous sommes intéressés dans ce travail à l'analyse de l'évolution des génomes mitochondriaux d'espèces végétales au niveau de leur structure. En effet, ces génomes sont caractérisés par un faible taux de mutation et un taux élevé de réarrangements. Cette étude s est portée à un niveau intraspécifique afin de limiter le nombre de réarrangements à analyser et sur deux espèces : Zea mays, le maïs, et Beta vulgaris, la betterave. Il s'avère, qu'en plus du polymorphisme de structure, ces génomes contiennent un grand nombre d'éléments dupliqués. Or les outils d'analyse d'évènements de réarrangements ne permettent pas d'inclure les évènements de duplication autrement qu'en distinguant les paralogues des orthologues, ce qu'il est particulièrement difficile à réaliser ici, du fait que les dupliqués sont identiques en séquence. Nous avons ici établi une stratégie basée sur l'hypothèse que les éléments dupliqués proviennent de duplications en tandem, permettant la reconnaissance, le tri et la distinction des éléments dupliqués. Cette méthode nous a conduits à proposer une histoire évolutive basée sur des réarrangements congruente avec les phylogénies de séquences. Les comparaisons entre génomes mitochondriaux de maïs et betteraves nous ont permis de montrer que des mécanismes évolutifs différents sont à l origine de la diversité génomique observée. Nous avons également observé des différences évolutives entre les génomes à un niveau intraspécifique soulevant le problème d'échantillonnage lorsque l'on veut comparer des génomes à un niveau interspécifique.Several methods can be used to study genome evolution. Most of the time, genome evolution isstudied through nucleotide sequence polymorphism. However, in some species, mutation rate is lowand polymorphisms are mainly caused by chromosomal rearrangements. In such a case, chromosomalrearrangement is the only informative marker to study genome evolution. In this study, we focused onplant mitochondrial genome evolution at the structural level. Plant mitochondrial genomes have beendescribed as highly rearranged, but no study has been conducted on their rearrangement evolution.We chose to analyze the diversity of plant mitochondrial genomes at the intraspecific level to workon a short evolutive scale, limiting rearrangement events among genomes. The study was conductedon two species : Zea mays and Beta vulgaris . Moreover, besides structural polymorphisms, plantmitochondrial genomes contain large number of duplicated elements which are not taken into accountby rearrangement tools if orthologous and paralogous relations are not established. Based on thehypothesis that the duplicated elements were caused by tandem duplication events, we proposed anew approach to find, sort and differentiate duplicated elements. This method led to phylogenies basedon rearrangement events consistent with phylogenies based on nucleotide sequences. The comparisonof genome evolution between maize and beet allowed us to show the existence of different evolutionhistories and mechanisms between these two species. We also observed evolutionary differences atthe intraspecific level, raising the question of sampling strategy when genomes are compared at theinterspecific level.LILLE1-Bib. Electronique (590099901) / SudocSudocFranceF

    Draft pan-genome sequence of american B73 and european F2 maize lines

    No full text
    The archive file contains the draft sequence of the american B73 and the european F2 maize lines pan-genome (fast format), the gene prediction for F2-specific regions (gtf format) and the location of F2- and B73-specific regions (gff format). More details are available from README files included in the archive

    Expression of a transferred nuclear gene in a mitochondrial genome

    Get PDF
    Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments

    SNP genotypes and aridity index

    No full text
    (i) SNP data for the 1249 accessions belonging to six taxa of beets, of which 950 individuals of Beta vulgaris subsp. maritima (wild taxon) and 299 individuals of the relative cultivated varieties B. vulgaris subsp. vulgaris including all the cultivated forms (collected in Europe) and used in genomic environment association (ii) Aridity index for the 950 individuals of Beta vulgaris subsp. maritima (third row

    Predicting genotype environmental range from genome-environment associations

    No full text
    International audienceGenome–environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random single nucleotide polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity
    corecore