54 research outputs found

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein β‰₯75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21β€ˆ550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0Β·85; 95% CI 0Β·76–0Β·94; p=0Β·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1Β·22; 1Β·12–1Β·33; p<0Β·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0Β·84; 95% CI 0Β·77–0Β·92; p<0Β·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1Β·00, 95% CI 0Β·93–1Β·07; p=0Β·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0Β·99, 95% CI 0Β·94–1Β·03; p=0Β·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0Β·99, 95% CI 0Β·93–1Β·05; p=0Β·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genesβ€”including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)β€”in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Prenatal activation of toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring

    Get PDF
    Background - There is mounting evidence for a neurodevelopmental basis for disorders such as autism and schizophrenia, in which prenatal or early postnatal events may influence brain development and predispose the young to develop these and related disorders. We have now investigated the effect of a prenatal immune challenge on brain development in the offspring. Pregnant rats were treated with the double-stranded RNA polyinosinic:polycytidylic acid (poly(I:C); 10 mg/kg) which mimics immune activation occurring after activation of Toll-like receptors-3 (TLR3) by viral infection. Injections were made in late gestation (embryonic days E14, E16 and E18), after which parturition proceeded naturally and the young were allowed to develop up to the time of weaning at postnatal day 21 (P21). The brains of these animals were then removed to assess the expression of 13 different neurodevelopmental molecules by immunoblotting. Results - Measurement of cytokine levels in the maternal blood 5 hours after an injection of poly(I:C) showed significantly increased levels of monocyte chemoattractant protein-1 (MCP-1), confirming immune activation. In the P21 offspring, significant changes were detected in the expression of GluN1 subunits of NMDA receptors, with no difference in GluN2A or GluN2B subunits or the postsynaptic density protein PSD-95 and no change in the levels of the related small GTPases RhoA or RhoB, or the NMDA receptor modulator EphA4. Among presynaptic molecules, a significant increase in Vesicle Associated Membrane Protein-1 (VAMP-1; synaptobrevin) was seen, with no change in synaptophysin or synaptotagmin. Proliferating Cell Nuclear Antigen (PCNA), as well as the neurogenesis marker doublecortin were unchanged, although Sox-2 levels were increased, suggesting possible changes in the rate of new cell differentiation. Conclusions - The results reveal the induction by prenatal poly(I:C) of selective molecular changes in the brains of P21 offspring, affecting primarily molecules associated with neuronal development and synaptic transmission. These changes may contribute to the behavioural abnormalities that have been reported in adult animals after exposure to poly(I:C) and which resemble symptoms seen in schizophrenia and related disorders

    Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells

    No full text
    NoPotential protective effects of the flavonoids quercetin and luteolin have been examined against the oxidative stress of MC3T3-E1 osteoblast-like cells. Although hydrogen peroxide and menadione reduced cell viability, the toxicity was prevented by desferrioxamine or catalase but not superoxide dismutase, suggesting the involvement of hydrogen peroxide in both cases. Quercetin and luteolin reduced the oxidative damage, especially that caused by hydrogen peroxide. When cultures were pre-incubated with quercetin or luteolin, protection was reduced or lost. Protection was also reduced when a 24 h pre-incubation with the flavonoids was followed by exposure to menadione alone. Pretreating cultures with luteolin impaired protection by quercetin, whereas quercetin pretreatment did not affect protection by luteolin. It is concluded that quercetin and luteolin suppress oxidative damage to MC3T3-E1 cells, especially caused by peroxide. The reduction in protection by pretreatment implies a down-regulation of part of the toxic transduction pathway

    Prenatal activation of maternal TLR3 receptors by viral-mimetic poly(I:C) modifies GluN2B expression in embryos and sonic hedgehog in offspring in the absence of kynurenine pathway activation

    No full text
    Activation of the immune system during pregnancy is believed to lead to psychiatric and neurological disorders in the offspring, but the molecular changes responsible are unknown. Polyinosinic:polycytidylic acid (poly(I:C)) is a viral-mimetic double-stranded RNA complex which activates Toll-Like-Receptor-3 and can activate the metabolism of tryptophan through the oxidative kynurenine pathway to compounds that modulate activity of glutamate receptors. The aim was to determine whether prenatal administration of poly(I:C) affects the expression of neurodevelopmental proteins in the offspring and whether such effects were mediated via the kynurenine pathway. Pregnant rats were treated with poly(I:C) during late gestation and the offspring were allowed to develop to postnatal day 21 (P21). Immunoblotting of the brains at P21 showed decreased expression of sonic hedgehog, a key protein in dopaminergic neuronal maturation. Expression of Ξ±-synuclein was decreased, while tyrosine hydroxylase was increased. Disrupted in Schizophrenia-1 (DISC-1) and 5-HT2C receptor levels were unaffected, as were the dependence receptors Unc5H1, Unc5H3 and Deleted in Colorectal Cancer (DCC), the inflammation-related transcription factor NFkB and the inducible oxidative enzyme cyclo-oxygenase-2 (COX-2). An examination of embryo brains 5 h after maternal poly(I:C) showed increased expression of GluN2B, with reduced doublecortin and DCC but no change in NFkB. Despite altered protein expression, there were no changes in the kynurenine pathway. The results show that maternal exposure to poly(I:C) alters the expression of proteins in the embryos and offspring which may affect the development of dopaminergic function. The oxidation of tryptophan along the kynurenine pathway is not involved in these effects

    SPC-XML: A structured representation for nested-parallel programming languages

    No full text
    Nested-parallelism programming models, where the task graph associated to a computation is series-parallel, present good analysis properties that can be exploited for scheduling, cost estimation or automatic mapping to different architectures. In this paper we present an XML intermediate representation for nestedparallel programming languages from which the application task-graph can be easily derived. We introduce some design principles oriented to allow the compiler to exploit information about the task synchronization structure, automatically determine implicit communication structures, apply different scheduling policies, and generate lower-level code using different models or communication tools. Results obtained for simple applications, using an extensible prototype compiler framework, show how this flexible approach can lead to portable and efficient implementations
    • …
    corecore