2,072 research outputs found

    Optimal Design of Electrically Fed Hybrid Mars Ascent Vehicle

    Get PDF
    The optimal design of the propulsion system for a potential Mars Ascent Vehicle is analyzed, in the context of the Mars Sample Return Mission. The Mars Ascent Vehicle has to perform an initial ascent phase from the surface and then circularize into a 170 km orbit. A two-stage launcher is taken into account: the same hybrid rocket engine is considered for both stages in order to limit the development costs. A cluster of two, three or four engines is employed in the first stage, whereas a single engine is always used in the second stage. Concerning the feeding system, three alternatives are taken into consideration, namely a blow down, a regulated and an electric turbo-pump feed system. The latter employs an electric motor to drive the oxidizer turbopump, whereas the power is supplied to the motor by lithium batteries. All the design options resulted in viable Mars Ascent Vehicle configurations (payloads are in the range of 70–100 kg), making the hybrid alternative worth considering for the sample return mission. The use of an electric turbo-pump feed system determines the highest vehicle performance with an estimated 10–25% payload gain with respect to gas-pressure feed systems

    Low-Order Models for Low-Frequency Combustion Instability in Hybrid Rocket Engines

    Get PDF
    A low-order model for a hybrid rocket engine is proposed to investigate low-frequency combustion instabilities. The present work is based on a one-way coupling between a one-dimensional thermal model to evaluate the unsteady regression rate and a zero-dimensional model which imposes mass conservation inside the rocket chamber. In this way, it is possible to estimate the unsteady pressure level inside the rocket chamber and predict the amplitude of the oscillations. Two different approaches are compared. In the first approach, the Oxidizer-Fuel (OF) ratio is directly computed from the ratio between the fuel and oxidizer mass flow rates. In this way the OF ratio strongly depends on the regression rate oscillations and, as a consequence, the pressure shows large fluctuations. An alternative approach has been investigated by computing the OF ratio from the fuel and oxidizer istantaneous densities. The two approaches are compared on a representative test case

    Emission-Driven Hybrid Rocket Engine Optimization for Small Launchers

    Get PDF
    Hybrid rocket engines are a green alternative to solid rocket motors and may represent a low-cost alternative to kerosene fueled rockets, while granting performance and control features similar to that of typical storable liquid rocket engines. In this work, the design of a three-stage hybrid launcher is optimized by means of a coupled procedure: an evolutionary algorithm optimizes the engine design, whereas an indirect optimization method optimizes the corresponding ascent trajectory. The trajectory integration also provides the vertical emission profiles required for the evaluation of the environmental impact of the launch. The propellants are a paraffin-based wax and liquid oxygen. The vehicle is launched from the ground and uses an electric turbo pump feed system. The initial mass is given (5000 kg) and the insertion of the payload into a 600-km circular, and polar orbit is considered as a reference mission. Clusters of similar hybrid rocket engines, with only few differences, are employed in all stages to reduce the development and operational costs of the launcher. Optimization is carried out with the aim of maximizing the payload mass and then minimizing the overall environmental impact of the launch. The results show that satisfactory performance is achievable also considering rocket polluting emissions: the carbon footprint of the launch can be reduced by one fourth at the cost of a 5-kg payload mass reduction

    Processo di produzione di propellente composito tramite deposizione e polimerizzazione fotoattivata per endoreattori a propellente solidi

    Get PDF
    The established state-of-the-art for composite solid propellant grain manufacture consists in mix-cast-cure process using hazardous chemicals and specific molds for propellant forming. In most of the cases, polyaddition of oligomers involves isocyanate functional groups. Construction constraints limit the feasibility of propellant geometries, confining the pressure-time history of rocket motors to some established configurations. Composition pot-life becomes one of the most important parameters in the definition of correlated industrial processes. The present patent propose an additive manufacturing process for propellant grain production based on UV curing. This technique enables more complex grain geometries, paving the way for new propulsive missions, thanks to customized thrust-time profiles or local composition fine tuning. The new curative method makes innovative use of pre-polymers, replacing isocyanates with UV-sensitive components characterized by lower chemical hazard for operators

    Analysis of a Stator-Rotor-Stator Spinning Disk Reactor in Single-Phase and Two-Phase Boiling Conditions Using a Thermo-Fluid Flow Network and CFD

    Get PDF
    Cryogenic liquid propellants are used in liquid rocket engines to obtain high specific impulse. The flow rates are controlled by turbopumps that deliver liquid propellant to the engine at high pressure levels. Due to the very low saturation temperature of the cryogenic propellant, in the first phases of the transient operation, in which the engine is at ambient temperature, its surfaces are subject to boiling conditions. The effect of boiling on the heat transfer between the solid and the fluid needs to be well characterized in order to correctly predict the cryopump metal temperature temporal evolution and the necessary amount of propellant. With the aim of benchmarking numerical tools against experimental data, a representative test case was chosen. This consists of a stator-rotorstator spinning disc reactor studied under single-phase and two-phase heat transfer conditions. The numerical approaches used are represented by a 1D network solver, where the pressure drop and heat transfer are calculated by correlations, and Computational Fluid Dynamics (CFD) simulations, carried out with ANSYS Fluent. Both the numerical tools returned a reasonable agreement in single-phase conditions, also thanks to the use of adequate correlations in the flow network solver and typical conditions for the CFD simulations. Two-phase conditions on the contrary are more challenging, with underpredictions up to 20% and 80%, respectively. The issues are ascribable to the use of correlations that are inadequate to capture the two-phase phenomena occurring in the srs reactor and numerical limitations in the actual implementation of the boiling model in the CFD solver

    Can Clinical and Surgical Parameters Be Combined to Predict How Long It Will Take a Tibia Fracture to Heal? A Prospective Multicentre Observational Study: The FRACTING Study

    Get PDF
    Background. Healing of tibia fractures occurs over a wide time range of months, with a number of risk factors contributing to prolonged healing. In this prospective, multicentre, observational study, we investigated the capability of FRACTING (tibia FRACTure prediction healING days) score, calculated soon after tibia fracture treatment, to predict healing time. Methods. The study included 363 patients. Information on patient health, fracture morphology, and surgical treatment adopted were combined to calculate the FRACTING score. Fractures were considered healed when the patient was able to fully weight-bear without pain. Results. 319 fractures (88%) healed within 12 months from treatment. Forty-four fractures healed after 12 months or underwent a second surgery. FRACTING score positively correlated with days to healing: r = 0.63 (p < 0.0001). Average score value was 7.3 \ub1 2.5; ROC analysis showed strong reliability of the score in separating patients healing before versus after 6 months: AUC = 0.823. Conclusions. This study shows that the FRACTING score can be employed both to predict months needed for fracture healing and to identify immediately after treatment patients at risk of prolonged healing. In patients with high score values, new pharmacological and nonpharmacological treatments to enhance osteogenesis could be tested selectively, which may finally result in reduced disability time and health cost savings

    Towards a muon collider

    Get PDF
    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work
    • …
    corecore