105 research outputs found
Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66
The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by
nuclear quadrupole resonance (NQR), electron spin resonance (ESR), electrical
resistivity, bulk magnetization and specific heat measurements. For
temperatures above ~180 K, the spin and charge properties show an activated
behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the
results indicate an insulating ground state which may or may not be charge
ordered. While the frustrated spins in remaining patches of the original kagome
lattice might not be directly detected here, the observation of coexisting
non-magnetic sites, free spins and frozen moments reveals an intrinsically
inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice
rationalize this magnetic state in terms of a heterogeneous distribution of
cluster sizes and morphologies near the site-percolation threshold
Spin excitations in the antiferromagnet NaNiO2
In NaNiO2, Ni3+ ions form a quasi two dimensional triangular lattice of S =
1=2 spins. The magnetic order observed below 20K has been described as an A
type antiferromagnet with ferro- magnetic layers weakly coupled
antiferromagnetically. We studied the magnetic excitations with the electron
spin resonance for frequencies 1-20 cm-1, in magnetic fields up to 14 T. The
bulk of the results are interpreted in terms of a phenomenological model
involving bi-axial anisotropy for the spins: a strong easy-plane term, and a
weaker anisotropy within the plane. The direction of the easy plane is
constrained by the collective Jahn-Teller distortion occurring in this material
at 480 K
Formation of collective spins in frustrated clusters
Using magnetization, specific heat and neutron scattering measurements, as
well as exact calculations on realistic models, the magnetic properties of the
\lacuvo compound are characterized on a wide temperature range. At high
temperature, this oxide is well described by strongly correlated atomic =1/2
spins while decreasing the temperature it switches to a set of weakly
interacting and randomly distributed entangled pseudo spins and
. These pseudo-spins are built over frustrated clusters, similar to
the kagom\'e building block, at the vertices of a triangular superlattice, the
geometrical frustration intervening then at different scales.Comment: 10 page
Safety and efficacy of brain biopsy: Results from a single institution retrospective cohort study
INTRODUCTION: Brain biopsy provides important histopathological diagnostic information for patients with new intracranial lesions. Although a minimally invasive technique, previous studies report an associated morbidity and mortality between 0.6% and 6.8%. We sought to characterise the risk linked to this procedure, and to establish the feasibility of instigating a day-case brain biopsy pathway at our institution. MATERIALS AND METHODS: This single-centre retrospective case series study included neuronavigation guided mini craniotomy and frameless stereotactic brain biopsies carried out between April 2019 and December 2021. Exclusion criteria were interventions performed for non-neoplastic lesions. Demographic data, clinical and radiological presentation, type of biopsy, histology and complications in the post-operative period were recorded. RESULTS: Data from 196 patients with a mean age of 58.7 years (SD+/-14.4 years) was analysed. 79% (n=155) were frameless stereotactic biopsies and 21% (n=41) neuronavigation guided mini craniotomy biopsies. Complications resulting in acute intracerebral haemorrhage and death, or new persistent neurological deficits were observed in 2% of patients (n=4; 2 frameless stereotactic; 2 open). Less severe complications or transient symptoms were noted in 2.5% of cases (n=5). 8 patients had minor haemorrhages in the biopsy tract with no clinical ramifications. Biopsy was non-diagnostic in 2.5% (n=5) of cases. Two cases were subsequently identified as lymphoma. Other reasons included insufficient sampling, necrotic tissue, and target error. DISCUSSION AND CONCLUSION: This study demonstrates that brain biopsy is a procedure with an acceptably low rate of severe complications and mortality, in line with previously published literature. This supports the development of day-case pathway allowing improved patient flow, reducing the risk of iatrogenic complications associated with hospital stay, such as infection and thrombosis
Mean-field Study of Charge, Spin, and Orbital Orderings in Triangular-lattice Compounds ANiO2 (A=Na, Li, Ag)
We present our theoretical results on the ground states in layered
triangular-lattice compounds ANiO2 (A=Na, Li, Ag). To describe the interplay
between charge, spin, orbital, and lattice degrees of freedom in these
materials, we study a doubly-degenerate Hubbard model with electron-phonon
couplings by the Hartree-Fock approximation combined with the adiabatic
approximation. In a weakly-correlated region, we find a metallic state
accompanied by \sqroot3x\sqroot3 charge ordering. On the other hand, we obtain
an insulating phase with spin-ferro and orbital-ferro ordering in a wide range
from intermediate to strong correlation. These phases share many
characteristics with the low-temperature states of AgNiO2 and NaNiO2,
respectively. The charge-ordered metallic phase is stabilized by a compromise
between Coulomb repulsions and effective attractive interactions originating
from the breathing-type electronphonon coupling as well as the Hund's-rule
coupling. The spin-orbital-ordered insulating phase is stabilized by the
cooperative effect of electron correlations and the Jahn-Teller coupling, while
the Hund's-rule coupling also plays a role in the competition with other
orbital-ordered phases. The results suggest a unified way of understanding a
variety of low-temperature phases in ANiO2. We also discuss a keen competition
among different spin-orbital-ordered phases in relation to a puzzling behavior
observed in LiNiO2
CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L.
Crassulacean acid metabolism (CAM) is an intriguing metabolic strategy to maintain photosynthesis under conditions of closed stomata. A shift from C3 photosynthesis to CAM in Mesembryanthemum crystallinum plants was induced by high salinity (0.4 M NaCl). In CAM-performing plants, the quantum efficiencies of photosystem II and I were observed to undergo distinct diurnal fluctuations that were characterized by a strong decline at the onset of the day, midday recovery, and an evening drop. The temporal recovery of both photosystems’ efficiency at midday was associated with a more rapid induction of the electron transport rate at PSII. This recovery of the photosynthetic apparatus at midday was observed to be accompanied by extreme swelling of thylakoids. Despite these fluctuations, a persistent effect of CAM was the acceptor side limitation of PSI during the day, which was accompanied by a strongly decreased level of Rubisco protein. Diurnal changes in the efficiency of photosystems were parallel to corresponding changes in the levels of mRNAs for proteins of PSII and PSI reaction centers and for rbcL, reaching a maximum in CAM plants at midday. This might reflect a high demand for new protein synthesis at this time of the day. Hybridization of run-on transcripts with specific probes for plastid genes of M. crystallinum revealed that the changes in plastidic mRNA levels were regulated at the level of transcription
Seasonal and Regional Dynamics of M. ulcerans Transmission in Environmental Context: Deciphering the Role of Water Bugs as Hosts and Vectors
Buruli ulcer, caused by Mycobacterium ulcerans, is a devastating skin disease. Most cases of Buruli ulcer occur in poor rural communities. As a result, treatment is frequently sought too late and about 25% of those infected—particularly children—become permanently disabled. Outbreaks of Buruli ulcer have always been associated with swampy areas. However, the route(s) of bacillus transmission is (are) still unclear. This Mycobacterium species resides in water where it colonizes many ecological niches such as aquatic plants, herbivorous animals and predatory/carnivorous insects. For several years the role of water bugs as hosts and vectors of M. ulcerans was suspected and was demonstrated under laboratory conditions. The aim of this work was to further assess the role of water bugs as hosts and vectors of M. ulcerans in environmental context. This work identifies several water bug families as hosts of M. ulcerans in Buruli ulcer endemic area. The detection of bacilli in saliva of human biting insects provides further evidence for their role in M. ulcerans transmission. Interestingly, three of these insects are good flyers, and as such could participate in M. ulcerans dissemination
- …