5 research outputs found

    Mesenchymal stem cells in the treatment of ischemic stroke

    Get PDF
    Over the past two decades, multiple preclinical studies have shown that transplantation of mesenchymal stem cells leads to a pronounced positive effect in animals with experimental stroke. Based on the promising results of preclinical studies, several clinical trials on the transplantation of mesenchymal stem cells to stroke patients have also been conducted. In this review, we present and analyze the results of completed clinical trials dedicated to the mesenchymal stem cells transplantation in patients with ischemic stroke. According to the obtained results, it can be concluded that transplantation of mesenchymal stem cells is safe and feasible from the economic and biomedical point of view. For the further implementa-tion of this promising approach into the clinical practice, randomized, placebo-controlled, multicenter clinical trials are needed with a large sample of patients and optimized cell transplantation protocols and patient inclusion criteria. In this review we also discuss possi-ble strategies to enhance the effectiveness of cell therapy with the use of mesenchymal stem cells

    Treg Cells in Ischemic Stroke: A Small Key to a Great Orchestrion

    Get PDF
    Ischemic stroke is a global medical problem and one of the leading causes of death or disability worldwide. The main approach of ischemic stroke therapy in the most acute period, which can prevent or minimize the development of a neurological deficit, is the restoration of the blood flow in the ischemic brain tissue using enzymatic thrombolysis or endovascular thromboextraction. When the therapeutic window is missed, the modulation of the acute inflammatory response may play an important role in determining the fate of neurons in the penumbra. The key players in this process are T-regulatory cells (Tregs) an immunosuppressive population of CD4+ T-cells with the CD4+, CD25+ CD127low, FoxP3+ phenotype. Despite the existing reports that Tregs (or certain Treg subpopulations) can exacerbate microcirculatory disorders in the ischemic tissue, many stadies convincingly suggest the positive role of Tregs in ischemic stroke. Resident CD69+ Tregs found in the normal mammalian brain have neuroprotective activity, produce IL-10 and other anti-inflammatory cytokines, control astrogliosis, and downregulate cytotoxic subpopulations of T cells and microglia. Systemic administration of Treg in stroke is accompained by a decrease in the volume of cerebral infarction and decreased levels of secondary neuronal death. Thus, the methods allowing Treg activation and expansion ex vivo open up several new avenues for the immunocorrection not only in systemic and autoimmune diseases, but, potentially, in the neuroprotective therapy for ischemic stroke. The relationship between Treg, inflammation, and cerebrovascular pathology is of particular interest in the case of ischemic stroke and COVID-19 as a comorbidity. It has been demonstrated that systemic inflammation caused by SARS-CoV-2 infection leads to a significant suppression of Treg, which is accompanied by an increased risk for the development of ischemic stroke and other neurological complications. Overall, the information summarized herein about the possible therapeutic potential of Treg in cerebrovascular pathology may be of practical interest not only for researchers, but also for clinicians
    corecore