127 research outputs found

    Letter From the Editor

    Get PDF

    Letter from the Editor

    Get PDF

    Letter from the Editor

    Get PDF

    Letter From the Editor

    Get PDF

    A De Novo Expression Profiling of Anopheles funestus, Malaria Vector in Africa, Using 454 Pyrosequencing

    Get PDF
    BACKGROUND: Anopheles funestus is one of the major malaria vectors in Africa and yet there are few genomic tools available for this species compared to An. gambiae. To start to close this knowledge gap, we sequenced the An. funestus transcriptome using cDNA libraries developed from a pyrethroid resistant laboratory strain and a pyrethroid susceptible field strain from Mali. RESULTS: Using a pool of life stages (pupae, larvae, adults: females and males) for each strain, 454 sequencing generated 375,619 reads (average length of 182 bp). De novo assembly generated 18,103 contigs with average length of 253 bp. The average depth of coverage of these contigs was 8.3. In total 20.8% of all reads were novel when compared to reference databases. The sequencing of the field strain generated 204,758 reads compared to 170,861 from the insecticide resistant laboratory strain. The contigs most differentially represented in the resistant strain belong to the P450 gene family and cuticular genes which correlates with previous studies implicating both of these gene families in pyrethroid resistance. qPCR carried out on six contigs indicates that these ESTs could be suitable for gene expression studies such as microarray. 31,000 sites were estimated to contain Single Nucleotide Polymorphisms (SNPs) and analysis of SNPs from 20 contigs suggested that most of these SNPs are likely to be true SNPs. Gene conservation analysis confirmed the close phylogenetic relationship between An. funestus and An. gambiae. CONCLUSION: This study represents a significant advance for the genetics and genomics of An. funestus since it provides an extensive set of both Expressed Sequence Tags (ESTs) and SNPs which can be readily adopted for the design of new genomic tools such as microarray or SNP platforms

    The State of the Region: Hampton Roads 2000

    Get PDF
    Those who know and love the region of Hampton Roads wish to make it an even better place to live than it is currently. In order for us to achieve that end, we must know literally where we are in critical areas. This first State of the Region Report is designed to provide citizens with a detailed, though not burdensome, look at several critical aspects of the lives we live in Hampton Roads. The Report focuses on topics such as the regional economy (including the tourist and military sectors), the workforce, K-12 education, technology, and of course, government and regional cooperation.https://digitalcommons.odu.edu/economics_books/1018/thumbnail.jp

    Implementation Science to Accelerate Clean Cooking for Public Health

    Get PDF
    Clean cooking has emerged as a major concern for global health and development because of the enormous burden of disease caused by traditional cookstoves and fires. The World Health Organization has developed new indoor air quality guidelines that few homes will be able to achieve without replacing traditional methods with modern clean cooking technologies, including fuels and stoves. However, decades of experience with improved stove programs indicate that the challenge of modernizing cooking in impoverished communities includes a complex, multi-sectoral set of problems that require implementation research. The National Institutes of Health, in partnership with several government agencies and the Global Alliance for Clean Cookstoves, has launched the Clean Cooking Implementation Science Network that aims to address this issue. In this article, our focus is on building a knowledge base to accelerate scale-up and sustained use of the cleanest technologies in low- and middle-income countries. Implementation science provides a variety of analytical and planning tools to enhance effectiveness of clinical and public health interventions. These tools are being integrated with a growing body of knowledge and new research projects to yield new methods, consensus tools, and an evidence base to accelerate improvements in health promised by the renewed agenda of clean cooking.Fil: Rosenthal, Joshua. National Institutes Of Health. Fogarty International Center; Estados UnidosFil: Balakrishnan, Kalpana. Sri Ramachandra University; IndiaFil: Bruce, Nigel. University of Liverpool; Reino UnidoFil: Chambers, David. National Institutes of Health. National Cancer Institute; Estados UnidosFil: Graham, Jay. The George Washington University; Estados UnidosFil: Jack, Darby. Columbia University; Estados UnidosFil: Kline, Lydia. National Institutes Of Health. Fogarty International Center; Estados UnidosFil: Masera, Omar Raul. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Mehta, Sumi. Global Alliance for Clean Cookstoves; Estados UnidosFil: Mercado, Ilse Ruiz. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Neta, Gila. National Institutes of Health. National Cancer Institute; Estados UnidosFil: Pattanayak, Subhrendu. University of Duke; Estados UnidosFil: Puzzolo, Elisa. Global LPG Partnership; Estados UnidosFil: Petach, Helen. U.S. Agency for International Development; Estados UnidosFil: Punturieri, Antonello. National Heart, Lung, and Blood Institute; Estados UnidosFil: Rubinstein, Adolfo Luis. Instituto de Efectividad ClĂ­nica y Sanitaria; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Sage, Michael. Centers for Disease Control and Prevention; Estados UnidosFil: Sturke, Rachel. National Institutes Of Health. Fogarty International Center; Estados UnidosFil: Shankar, Anita. University Johns Hopkins; Estados UnidosFil: Sherr, Kenny. University of Washington; Estados UnidosFil: Smith, Kirk. University of California at Berkeley; Estados UnidosFil: Yadama, Gautam. Washington University in St. Louis; Estados Unido

    Are there independent predisposing factors for postoperative infections following open heart surgery?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nosocomial infections after cardiac surgery represent serious complications associated with substantial morbidity, mortality and economic burden. This study was undertaken to evaluate the frequency, characteristics, and risk factors of microbiologically documented nosocomial infections after cardiac surgery in a Cardio-Vascular Intensive Care Unit (CVICU).</p> <p>Methods</p> <p>All patients who underwent open heart surgery between May 2006 and March 2008 were enrolled in this prospective study. Pre-, intra- and postoperative variables were collected and examined as possible risk factors for development of nosocomial infections. The diagnosis of infection was always microbiologically confirmed.</p> <p>Results</p> <p>Infection occurred in 24 of 172 patients (13.95%). Out of 172 patients, 8 patients (4.65%) had superficial wound infection at the sternotomy site, 5 patients (2.9%) had central venous catheter infection, 4 patients (2.32%) had pneumonia, 9 patients (5.23%) had bacteremia, one patient (0.58%) had mediastinitis, one (0.58%) had harvest surgical site infection, one (0.58%) had urinary tract infection, and another one patient (0.58%) had other major infection. The mortality rate was 25% among the patients with infection and 3.48% among all patients who underwent cardiac surgery compared with 5.4% of patients who did not develop early postoperative infection after cardiac surgery. Culture results demonstrated equal frequencies of gram-positive cocci and gram-negative bacteria. A backward stepwise multivariable logistic regression model analysis identified diabetes mellitus (OR 5.92, CI 1.56 to 22.42, p = 0.009), duration of mechanical ventilation (OR 1.30, CI 1.005 to 1.69, p = 0.046), development of severe complications in the CICU (OR 18.66, CI 3.36 to 103.61, p = 0.001) and re-admission to the CVICU (OR 8.59, CI 2.02 to 36.45, p = 0.004) as independent risk factors associated with development of nosocomial infection after cardiac surgery.</p> <p>Conclusions</p> <p>We concluded that diabetes mellitus, the duration of mechanical ventilation, the presence of complications irrelevant to the infection during CVICU stay and CVICU re-admission are independent risk factors for the development of postoperative infection in cardiac surgery patients.</p

    AGILE-ACCORD: A Randomized, Multicentre, Seamless, Adaptive Phase I/II Platform Study to Determine the Optimal Dose, Safety and Efficacy of Multiple Candidate Agents for the Treatment of COVID-19: A structured summary of a study protocol for a randomised platform trial.

    Get PDF
    OBJECTIVES: Phase I - To determine the optimal dose of each candidate (or combination of candidates) entered into the platform. Phase II - To determine the efficacy and safety of each candidate entered into the platform, compared to the current Standard of Care (SoC), and recommend whether it should be evaluated further in a later phase II & III platforms. TRIAL DESIGN: AGILE-ACCORD is a Bayesian multicentre, multi-arm, multi-dose, multi-stage open-label, adaptive, seamless phase I/II randomised platform trial to determine the optimal dose, activity and safety of multiple candidate agents for the treatment of COVID-19. Designed as a master protocol with each candidate being evaluated within its own sub-protocol (Candidate Specific Trial (CST) protocol), randomising between candidate and SoC with 2:1 allocation in favour of the candidate (N.B the first candidate has gone through regulatory approval and is expected to open to recruitment early summer 2020). Each dose will be assessed for safety sequentially in cohorts of 6 patients. Once a phase II dose has been identified we will assess efficacy by seamlessly expanding into a larger cohort. PARTICIPANTS: Patient populations can vary between CSTs, but the main eligibility criteria include adult patients (≄18 years) who have laboratory-confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will include both severe and mild-moderate patients defined as follows: Group A (severe disease) - patients with WHO Working Group on the Clinical Characteristics of COVID-19 infection 9-point ordinal scale of Grades 4 (hospitalised, oxygen by mask or nasal prongs), 5 (hospitalised, non-invasive ventilation or high flow oxygen), 6 (hospitalised, intubation and mechanical ventilation) or 7 (hospitalised, ventilation and additional organ support); Group B (mild-moderate disease) - ambulant or hospitalised patients with peripheral capillary oxygen saturation (SpO2) >94% RA. If any CSTs are included in the community setting, the CST protocol will clarify whether patients with suspected SARS-CoV-2 infection are also eligible. Participants will be recruited from England, North Ireland, Wales and Scotland. INTERVENTION AND COMPARATOR: Comparator is the current standard of care (SoC), in some CSTs plus placebo. Candidates that prevent uncontrolled cytokine release, prevention of viral replication, and other anti-viral treatment strategies are at various stages of development for inclusion into AGILE-ACCORD. Other CSTs will be added over time. There is not a set limit on the number of CSTs we can include within the AGILE-ACCORD Master protocol and we will upload each CST into this publication as each opens to recruitment. MAIN OUTCOMES: Phase I: Dose limiting toxicities using Common Terminology Criteria for Adverse Events v5 Grade ≄3 adverse events. Phase II: Agreed on a CST basis depending on mechanism of action of the candidate and patient population. But may include; time to clinical improvement of at least 2 points on the WHO 9-point category ordinal scale [measured up to 29 days from randomisation], progression of disease (oxygen saturation (SaO2) <92%) or hospitalization or death, or change in time-weighted viral load [measured up to 29 days from randomisation]. RANDOMISATION: Varies with CST, but default is 2:1 allocation in favour of the candidate to maximise early safety data. BLINDING (MASKING): For the safety phase open-label although for some CSTs may include placebo or SoC for the efficacy phase. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Varies between CSTs. However simulations have shown that around 16 participants are necessary to determine futility or promise of a candidate at a given dose (in efficacy evaluation alone) and between 32 and 40 participants are required across the dose-finding and efficacy evaluation when capping the maximum number of participants contributing to the evaluation of a treatment at 40. TRIAL STATUS: Master protocol version number v5 07 May 2020, trial is in setup with full regulatory approval and utilises several digital technology solutions, including Medidata's Rave EDC [electronic data capture], RTSM for randomisation and patient eConsent on iPads via Rave Patient Cloud. The recruitment dates will vary between CSTs but at the time of writing no CSTs are yet open for recruitment. TRIAL REGISTRATION: EudraCT 2020-001860-27 14th March 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol
    • 

    corecore