10 research outputs found

    Search for neutrinoless double beta decay with NEMO 3 experiment

    Full text link
    NEMO 3 experiment is designed to search for neutrinoless double beta decay. It is located in the Modane Underground Laboratory (LSM) and has been taking data since February 2003. The half- lives of two neutrino beta decay have been measured for seven isotopes. No evidence of neutrinoless double beta decay has been found. The limits on both the half-lives of the neutrinoless double beta decay and the corresponding Majorana effective masses are derivedComment: 3 pages, 2 figures, 2 tables, PANIC08 Conference proceeding

    Site selection strategy for environmental monitoring in connection with shale-gas exploration: Vale of Pickering, Yorkshire and Fylde, Lancashire

    Get PDF
    This report outlines the strategies for site selection adopted as part of a baseline environmental monitoring investigation in connection with shale-gas exploration and development in the Vale of Pickering, North Yorkshire. The project forms an extension to an ongoing baseline investigation being carried out in the Fylde, Lancashire, and the current project incorporates an air-quality monitoring component that was not within the original remit of the Fylde study. The DECC-funded investigation is led by the British Geological Survey, and is being carried out as a collaboration with the Universities of Birmingham, Bristol, Liverpool, Manchester and York (National Centre for Atmospheric Science, NCAS) and Public Health England (PHE). The project incorporates work packages in monitoring of water quality, air quality and greenhouse gases, soil gas, ground motion and seismicity, and air radon and is being carried out over the period September 2015 to March 2016. Site selection is a critical consideration in setting up a monitoring programme as chosen sites need to be representative of conditions to be tested. While sites will necessarily be subject to practical constraints (land access agreements, existing infrastructure, geological conditions, cost implications etc), site selection has a large part to play in ensuring collection of quantifiable, unbiased data. This report sets out the rationale for site selection in each of the work packages and the steps taken to ensure defensible site-selection decisions and to minimise the impact of practical constraints

    Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology

    Get PDF
    Predictive mapping of indoor radon potential often requires the use of additional datasets. A range of geological, geochemical and geophysical data may be considered, either individually or in combination. The present work is an evaluation of how much of the indoor radon variation in south west England can be explained by four different datasets: a) the geology (G), b) the airborne gamma-ray spectroscopy (AGR), c) the geochemistry of topsoil (TSG) and d) the geochemistry of stream sediments (SSG). The study area was chosen since it provides a large (197,464) indoor radon dataset in association with the above information. Geology provides information on the distribution of the materials that may contribute to radon release while the latter three items provide more direct observations on the distributions of the radionuclide elements uranium (U), thorium (Th) and potassium (K). In addition, (c) and (d) provide multi-element assessments of geochemistry which are also included in this study. The effectiveness of datasets for predicting the existing indoor radon data is assessed through the level (the higher the better) of explained variation (% of variance or ANOVA) obtained from the tested models. A multiple linear regression using a compositional data (CODA) approach is carried out to obtain the required measure of determination for each analysis. Results show that, amongst the four tested datasets, the soil geochemistry (TSG, i.e. including all the available 41 elements, 10 major – Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti - plus 31 trace) provides the highest explained variation of indoor radon (about 40%); more than double the value provided by U alone (ca. 15%), or the sub composition U, Th, K (ca. 16%) from the same TSG data. The remaining three datasets provide values ranging from about 27% to 32.5%. The enhanced prediction of the AGR model relative to the U, Th, K in soils suggests that the AGR signal captures more than just the U, Th and K content in the soil. The best result is obtained by including the soil geochemistry with geology and AGR (TSG + G + AGR, ca. 47%). However, adding G and AGR to the TSG model only slightly improves the prediction (ca. +7%), suggesting that the geochemistry of soils already contain most of the information given by geology and airborne datasets together, at least with regard to the explanation of indoor radon. From the present analysis performed in the SW of England, it may be concluded that each one of the four datasets is likely to be useful for radon mapping purposes, whether alone or in combination with others. The present work also suggest that the complete soil geochemistry dataset (TSG) is more effective for indoor radon modelling than using just the U (+Th, K) concentration in soil

    Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology

    Get PDF
    Predictive mapping of indoor radon potential often requires the use of additional datasets. A range of geological, geochemical and geophysical data may be considered, either individually or in combination. The present work is an evaluation of how much of the indoor radon variation in south west England can be explained by four different datasets: a) the geology (G), b) the airborne gamma-ray spectroscopy (AGR), c) the geochemistry of topsoil (TSG) and d) the geochemistry of stream sediments (SSG). The study area was chosen since it provides a large (197,464) indoor radon dataset in association with the above information. Geology provides information on the distribution of the materials that may contribute to radon release while the latter three items provide more direct observations on the distributions of the radionuclide elements uranium (U), thorium (Th) and potassium (K). In addition, (c) and (d) provide multi-element assessments of geochemistry which are also included in this study. The effectiveness of datasets for predicting the existing indoor radon data is assessed through the level (the higher the better) of explained variation (% of variance or ANOVA) obtained from the tested models. A multiple linear regression using a compositional data (CODA) approach is carried out to obtain the required measure of determination for each analysis. Results show that, amongst the four tested datasets, the soil geochemistry (TSG, i.e. including all the available 41 elements, 10 major – Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti - plus 31 trace) provides the highest explained variation of indoor radon (about 40%); more than double the value provided by U alone (ca. 15%), or the sub composition U, Th, K (ca. 16%) from the same TSG data. The remaining three datasets provide values ranging from about 27% to 32.5%. The enhanced prediction of the AGR model relative to the U, Th, K in soils suggests that the AGR signal captures more than just the U, Th and K content in the soil. The best result is obtained by including the soil geochemistry with geology and AGR (TSG + G + AGR, ca. 47%). However, adding G and AGR to the TSG model only slightly improves the prediction (ca. +7%), suggesting that the geochemistry of soils already contain most of the information given by geology and airborne datasets together, at least with regard to the explanation of indoor radon. From the present analysis performed in the SW of England, it may be concluded that each one of the four datasets is likely to be useful for radon mapping purposes, whether alone or in combination with others. The present work also suggest that the complete soil geochemistry dataset (TSG) is more effective for indoor radon modelling than using just the U (+Th, K) concentration in soil

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose. This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations. This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity; • be informed about the levels of natural radioactivity caused by different sources; • have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor; • and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.JRC.G.10-Knowledge for Nuclear Security and Safet

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose.This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations.This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity;• be informed about the levels of natural radioactivity caused by different sources;• have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor;• and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.Additional information at: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiatio

    Chapter 5: Radon

    Get PDF
    Natural ionising radiation is considered the largest contributor to the collective effective dose received by the world’s population. Man is continuously exposed to ionising radiation from several sources that can be grouped into two categories: first, high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and, second, radioactive nuclides generated when the Earth was formed and still present in its crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium (U) and thorium (Th) radioactive families together with potassium (40K), a long-lived radioactive isotope of the elemental potassium. In most cases, radon (222Rn), a noble gas produced by radioactive decay of the 238U progeny, is the major contributor to the total dose. This European Atlas of Natural Radiation has been conceived and developed as a tool for the public to become familiar with natural radioactivity; be informed about the levels of such radioactivity caused by different sources; and have a more balanced view of the annual dose received by the world’s population, to which natural radioactivity is the largest contributor. At the same time, it provides reference material and generates harmonised data, both for the scientific community and national competent authorities. Intended as an encyclopaedia of natural radioactivity, the Atlas describes the different sources of such radioactivity, cosmic and terrestrial, and represents the state-of-the art of this topic. In parallel, it contains a collection of maps of Europe showing the levels of natural sources of radiation. This work unfolds as a sequence of chapters: the rationale behind; some necessary background information; terrestrial radionuclides; radon; radionuclides in water and river sediments; radionuclides in food; cosmic radiation and cosmogenic radionuclides. The final chapter delivers the overall goal of the Atlas: a population-weighted average of the annual effective dose due to natural sources of radon, estimated for each European country as well as for all of them together, giving, therefore, an overall European estimate. As a complement, this introductory chapter offers an overview of the legal basis and requirements on protecting the public from exposure to natural radiation sources. In Europe, radiation has a long tradition. Based on the Euratom Treaty, the European Atomic Energy Community early established a set of legislation for protecting the public against dangers arising from artificial ('man-made') ionising radiation, but this scope has since been extended to include natural radiation. Indeed, the recently modernised and consolidated Basic Safety Standards Directive from 2013 contains detailed provisions on the protection from all natural radiation sources, including radon, cosmic rays, natural radionuclides in building material, and naturally occurring radioactive material
    corecore