16 research outputs found
Effect of short term diet restriction on gene expression in the bovine hypothalamus using next generation RNA sequencing technology
peer-reviewedThis work was funded through Teagasc Walsh Fellowship to Daragh Matthews (Project Number: RMIS 5756).Background
Negative energy balance (NEB) is an imbalance between energy intake and energy requirements for lactation and body maintenance affecting high-yielding dairy cows and is of considerable economic importance due to its negative impact on fertility and health in dairy herds. It is anticipated that the cow hypothalamus experiences extensive biochemical changes during the early post partum period in an effort to re-establish metabolic homeostasis. However, there is variation in the tolerance to NEB between individual cows. In order to understand the genomic regulation of ovulation in hypothalamic tissue during NEB, mRNA transcriptional patterns between tolerant and sensitive animals were examined. A short term dietary restriction heifer model was developed which induced abrupt onset of anoestrus in some animals (Restricted Anovulatory; RA) while others maintained oestrous cyclicity (Restricted Ovulatory; RO). A third control group (C) received a higher level of normal feeding.
Results
A total of 15,295 genes were expressed in hypothalamic tissue. Between RA and C groups 137 genes were differentially expressed, whereas between RO and C, 32 genes were differentially expressed. Differentially expressed genes were involved in the immune response and cellular motility in RA and RO groups, respectively, compared to C group. The largest difference between groups was observed in the comparison between RA and RO heifers, with 1094 genes shown to be significantly differentially expressed (SDE). Pathway analysis showed that these SDE genes were associated with 6 canonical pathways (P < 0.01), of which neuroactive ligand-receptor interaction was the most significant. Within the comparisons the main over-represented pathway functions were immune response including neuroprotection (CXCL10, Q1KLR3, IFIH1, IL1 and IL8; RA v C and RA v RO); energy homeostasis (AgRP and NPY; RA v RO); cell motility (CADH1, DSP and TSP4; RO v C) and prevention of GnRH release (NTSR1 IL1α, IL1β, NPY and PACA; RA v RO).
Conclusions
This information will assist in understanding the genomic factors regulating the influence of diet restriction on fertility and may assist in optimising nutritional and management systems for the improvement in reproductive performance.Teagasc Walsh Fellowship Programm
Analysis of a large dataset reveals haplotypes carrying putatively recessive lethal and semi-lethal alleles with pleiotropic effects on economically important traits in beef cattle
Additional file 6: Table S5. Protein coding genes between 51,611,400 and 53,234,159Â bp on bovine chromosome 16 for the SI16H5 haplotype; the genes showing prenatal or perinatal lethality in mice are in bold. The data provided represent protein coding genes located on the haplotype (SI16H5) that carries putatively recessive lethal allele
Prevalence of sex‐chromosome aneuploidy estimated using SNP genotype intensity information in a large population of juvenile dairy and beef cattle
Aneuploidy is a genetic condition characterized by the loss or gain of one or more chromosomes. Aneuploidy affecting the sex chromosomes can lead to infertility in otherwise externally phenotypically normal cattle. Early identification of cattle with sex chromosomal aneuploidy is important to minimize the costs associated with rearing infertile cattle and futile breeding attempts. As most livestock breeding programs routinely genotype their breeding populations using single nucleotide polymorphism (SNP) arrays, this study aimed to assess the feasibility of integrating an aneuploidy screening tool into the existing pipelines that handle dense SNP genotype data. A further objective was to estimate the prevalence of sex chromosome aneuploidy in a population of 146,431 juvenile cattle using available genotype intensity data. Three genotype intensity statistics were used: the LogR Ratio (LRR), R‐value (the sum of X and Y SNP probe intensities), and B‐allele frequency (BAF) measurements. Within the female‐verified population of 124,958 individuals, the estimated prevalence rate was 0.0048% for XO, 0.0350% for XXX, and 0.0004% for XXY. The prevalence of XXY in the male‐verified population was 0.0870% (i.e., 18 out of 20,670 males). Cytogenetic testing was used to verify 2 of the XXX females who were still alive. The proposed approach can be readily integrated into existing genomic pipelines, serving as an efficient, large‐scale screening tool for aneuploidy. Its implementation could enable the early identification of infertile animals with sex‐chromosome aneuploidy
Prevalence of Autosomal Monosomy and Trisomy Estimated Using Single Nucleotide Polymorphism Genotype Intensity Chip Information in a Large Population of Juvenile Dairy and Beef Cattle
Aneuploidy, a genetic condition characterised by the deletion (monosomy) or duplication (trisomy) of a chromosome, has been extensively studied in humans, particularly in the context of trisomy on chromosome 21, also known as Down syndrome. Research on autosomal aneuploidy in live‐born cattle has been limited to case reports, resulting in a lack of prevalence estimates of aneuploidy in cattle. Furthermore, the viability or lethality of aneuploidy on specific autosomes in cattle has not been well documented. The objective of this study was to estimate the prevalence of autosomal aneuploidy in a large population of new‐born and juvenile beef and dairy cattle using single nucleotide polymorphism (SNP) chip genotype intensity data. Of the population of 779,138 cattle genotyped when younger than 15 months of age, 139 cattle (i.e., 0.017%) were diagnosed with one case of autosomal trisomy. Trisomy in only 10 different autosomes were detected (BTA 4, 6, 12, 15, 20, 24, 26, 27, 28 and 29) albeit the one case of trisomy detected on Bos taurus autosome (BTA) 4 was in an additional population of 341,927 cattle that were genotyped at >15 months of age and was therefore excluded from prevalence estimates to minimise bias. The prevalence of trisomy per chromosome was generally inversely related to the length of the chromosome. Although the number of affected individuals was few, there was no evidence of differences in prevalence by breed, inbreeding level or parental age. The parental origin of the detected cases of trisomy was maternal for 92% of the cases. No cases of monosomy were detected despite the large dataset, which included calves genotyped at birth, indicating the potential lethal nature of monosomy in cattle. Cytogenetic testing was used to verify three of the animals with detected autosomal trisomy who were still alive. Eighteen of the 139 animals identified with autosomal trisomy were recorded as being stillborn, resulting in a prevalence of autosomal aneuploidy in live‐born cattle of 0.015%. Of the 121 live‐born cattle with autosomal trisomy, a total of 68 died on farm at, on average (standard deviation), 6.8 (8.7) months of age. All animals with autosomal trisomy on BTA 6, 12, 15, 20 or 24 were either stillborn or died on farm within 15 days of birth. This study is the first report of trisomy on BTA 4, 6, 15, 20 and 27 in live‐born cattle, as well as the first to document fertile cows with trisomy on BTA 4, 27 or 28. Given that genotype intensity SNP data from SNP‐chips are readily available, identifying animals affected with autosomal aneuploidy as well as quantifying and monitoring the incidence can be easily undertaken
Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows
The aim of this study was to identify genomic regions associated with 305-day milk yield and lactation curve parameters on primiparous (n = 9,910) and multiparous (n = 11,158) Holstein cows. The SNP solutions were estimated using a weighted single-step genomic BLUP approach and imputed high-density panel (777k) genotypes. The proportion of genetic variance explained by windows of 50 consecutive SNP (with an average of 165 Kb) was calculated, and regions that accounted for more than 0.50% of the variance were used to search for candidate genes. Estimated heritabilities were 0.37, 0.34, 0.17, 0.12, 0.30 and 0.19, respectively, for 305-day milk yield, peak yield, peak time, ramp, scale and decay for primiparous cows. Genetic correlations of 305-day milk yield with peak yield, peak time, ramp, scale and decay in primiparous cows were 0.99, 0.63, 0.20, 0.97 and -0.52, respectively. The results identified three windows on BTA14 associated with 305-day milk yield and the parameters of lactation curve in primi- and multiparous cows. Previously proposed candidate genes for milk yield supported by this work include GRINA, CYHR1, FOXH1, TONSL, PPP1R16A, ARHGAP39, MAF1, OPLAH and MROH1, whereas newly identified candidate genes are MIR2308, ZNF7, ZNF34, SLURP1, MAFA and KIFC2 (BTA14). The protein lipidation biological process term, which plays a key role in controlling protein localization and function, was identified as the most important term enriched by the identified genes
Expert-based development of a generic HACCP-based risk management system to prevent critical negative energy balance in dairy herds
The objective of this study was to develop a generic risk management system based on the Hazard Analysis and Critical Control Point (HACCP) principles for the prevention of critical negative energy balance (NEB) in dairy herds using an expert panel approach. In addition, we discuss the advantages and limitations of the system in terms of implementation in the individual dairy herd. For the expert panel, we invited 30 researchers and advisors with expertise in the field of dairy cow feeding and/or health management from eight European regions. They were invited to a Delphi-based set-up that included three inter-correlated questionnaires in which they were asked to suggest risk factors for critical NEB and to score these based on 'effect' and 'probability'. Finally, the experts were asked to suggest critical control points (CCPs) specified by alarm values, monitoring frequency and corrective actions related to the most relevant risk factors in an operational farm setting. A total of 12 experts (40 %) completed all three questionnaires. Of these 12 experts, seven were researchers and five were advisors and in total they represented seven out of the eight European regions addressed in the questionnaire study. When asking for suggestions on risk factors and CCPs, these were formulated as 'open questions', and the experts' suggestions were numerous and overlapping. The suggestions were merged via a process of linguistic editing in order to eliminate doublets. The editing process revealed that the experts provided a total of 34 CCPs for the 11 risk factors they scored as most important. The consensus among experts was relatively high when scoring the most important risk factors, while there were more diverse suggestions of CCPs with specification of alarm values and corrective actions. We therefore concluded that the expert panel approach only partly succeeded in developing a generic HACCP for critical NEB in dairy cows. We recommend that the output of this paper is used to inform key areas for implementation on the individual dairy farm by local farm teams including farmers and their advisors, who together can conduct herd-specific risk factor profiling, organise the ongoing monitoring of herd-specific CCPs, as well as implement corrective actions when CCP alarm values are exceeded
ICNP® R&D Centre Ireland: Defining Requirements for an Intersectoral Digital Landscape
The apparent speed and impact of creating a global digital landscape for health and social care tells us that the health workforce is playing catch-up with eHealth national programmes. Locating how and where the profession of nursing fits with future models of health service delivery is critical to provide focused engagement for the populations they serve. In 2016, Dublin City University (DCU) School of Nursing and Human Sciences (SNHS) created a research and development centre for International Classification for Nursing Practice (ICNP®) in Ireland. This paper provides a summary of the first year of the centre’s research, describing how the initial activities link to the development of global eHealth policy. A key aspect of service delivery relates to defining care requirements, specifically to support sustainable intersectoral healthcare. Considering how nursing-sensitive language (clinical terminology) is best mapped is necessary to articulate the care requirements and processes to achieve optimal patient outcome. The World Health Organisational Framework for Integrated Care provides a pathway for crystallising the steep learning curve that the profession has currently found itself situated in, to deliver on contemporary digital healthcare