47 research outputs found

    Chronic Antagonism of the Mineralocorticoid Receptor Ameliorates Hypertension and End Organ Damage in a Rodent Model of Salt-Sensitive Hypertension

    Get PDF
    We investigated the effects of chronic mineralocorticoid receptor blockade with eplerenone on the development and progression of hypertension and end organ damage in Dahl salt-sensitive rats. Eplerenone significantly attenuated the progressive rise in systolic blood pressure (SBP) (204 ± 3 vs. 179±3 mmHg, p < 0.05), reduced proteinuria (605.5 ± 29.6 vs. 479.7 ± 26.1 mg/24h, p < 0.05), improved injury scores of glomeruli, tubules, renal interstitium, and vasculature in Dahl salt-sensitive rats fed a high-salt diet. These results demonstrate that mineralocorticoid receptor antagonism provides target organ protection and attenuates the development of elevated blood pressure (BP) in a model of salt-sensitive hypertension

    Effects of incense smoke on human lymphocyte DNA

    No full text
    Incense burning is common in Southeast Asia, where it is a traditional and ceremonial practice in deity worship and paying respect to ancestors. However, incense emissions are an important source of indoor air pollution in Asia, and may induce health problems to those exposed. In this in vitro study the effects of incense emissions on human DNA were investigated using the comet assay. Particulates in smoke from six kinds of incense were trapped in saline or ethanol and human lymphocytes were exposed under controlled conditions. Results showed that DNA damage, including strand breaks, was induced by both aqueous and ethanolic extracts of two samples. The ethanolic extract of one sample induced DNA damage, while no significant DNA damage was found in the remaining three samples. The mechanisms underlying DNA damage induced by incense emissions were also investigated. Catalase (CAT), sodium azide, and superoxide dismutase (SOD) were co-incubated with extract, which exerted significant DNA damaging effects. Results showed that CAT with or without SOD diminished DNA damage, whereas sodium azide did not seem able to reduce DNA damage. Data indicate there are potential adverse health effects of such exposure, particularly for temple workers

    Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms

    Get PDF
    Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additiona

    Glucagon like receptor 1/ glucagon dual agonist acutely enhanced hepatic lipid clearance and suppressed de novo lipogenesis in mice.

    No full text
    Lipid lowering properties of glucagon have been reported. Blocking glucagon signaling leads to rise in plasma LDL levels. Here, we demonstrate the lipid lowering effects of acute dosing with Glp1r/Gcgr dual agonist (DualAG). All the experiments were performed in 25 week-old male diet-induced (60% kCal fat) obese mice. After 2 hrs of fasting, mice were injected subcutaneously with vehicle, liraglutide (25nmol/kg) and DualAG (25nmol/kg). De novo cholesterol and palmitate synthesis was measured by deuterium incorporation method using D2O. 13C18-oleate infusion was used for measuring fatty acid esterification. Simultaneous activation of Glp1r and Gcgr resulted in decrease in plasma triglyceride and cholesterol levels. DualAG enhanced hepatic LDLr protein levels, along with causing decrease in content of plasma ApoB48 and ApoB100. VLDL secretion, de novo palmitate synthesis and fatty acid esterification decreased with acute DualAG treatment. On the other hand, ketone levels were elevated with DualAG treatment, indicating increased fatty acid oxidation. Lipid relevant changes were absent in liraglutide treated group. In an acute treatment, DualAG demonstrated significant impact on lipid homeostasis, specifically on hepatic uptake, VLDL secretion and de novo synthesis. These effects collectively reveal that lipid lowering abilities of DualAG are primarily through glucagon signaling and are liver centric

    Diacylglycerol acyltransferase-1 (DGAT1) inhibition perturbs postprandial gut hormone release.

    Get PDF
    Diacylglycerol acyltransferase-1 (DGAT1) is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4) inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases

    Effects of orally administered fatty acids on incretins and other hormones.

    No full text
    <p>(A-F) Three-month-old lean C57BL/6N mice were fasted overnight and orally dosed with saline, sodium butyrate, sodium propionate, sodium acetate, an SCFA admixture (65% sodium acetate, 20% sodium propionate, 15% sodium butyrate), octanoic acid (OA), or α-linolenic acid (LA), all at 400mg/kg body weight. Plasma levels of total GLP-1, active GLP-1, GIP, PYY, insulin, and amylin were measured 10 minutes after dosing. Intra-assay CV% was below 8.9% for all immunoassays. Data are mean ± SEM. N=8. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs. saline. NS: not significant.</p

    Effects of dietary SCFAs on body weight and glucose homeostasis.

    No full text
    <p>Three-month-old lean C57BL/6N mice were switched to HFD containing molarity-matched sodium salts of butyrate (5% w/w), propionate (4.3%), and acetate (3.7%) for four weeks. (A) Body weight was measured weekly, and four-week cumulative weight gain is expressed as a percentage of initial body weight. (B) Oral glucose tolerance test was performed in overnight fasted mice four weeks after diet switch. Blood glucose levels and total glucose area-under-the-curve (AUC) are shown. (C, D) Plasma levels of insulin and leptin were determined in overnight fasted mice four weeks after diet switch. Data are mean ± SEM. N=8. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs. control HFD.</p

    Effects of dietary SCFAs on food intake and locomotor activity.

    No full text
    <p>(A-C) Three-month-old lean C57BL/6N mice were switched to HFD containing sodium salts of butyrate (5%), propionate (4.3%), and acetate (3.7%) for nine days. Daily food intake, cumulative food intake, and cumulative locomotor activity are shown. L: light phase. D: dark phase. (D, E) Dose titration of sodium butyrate and sodium propionate in HFD was performed in three-month-old lean C57BL/6N mice. Eight-day cumulative body weight change and food intake are shown. Data are mean ± SEM. N=8. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 vs. control diet.</p

    Effects of butyrate and propionate on energy homeostasis in <i>Ffar3</i> knockout mice.

    No full text
    <p>(A) Body weight of three-month-old <i>Ffar3</i> knockouts and wild-type littermates on standard chow diet and one week after switching to HFD. N=34–41. (B-D) After one week of HFD feeding, <i>Ffar3</i> knockouts and wild-type littermates were switched to HFD containing sodium butyrate (5%) or sodium propionate (4.3%) for eight days. Cumulative body weight change and daily food intake are shown. Data are mean ± SEM. N=8–13. *P<0.05, **P<0.01, ***P<0.001 vs. control diet. #P<0.05 vs. wild-type mice on control diet. NS: not significant.</p
    corecore