45 research outputs found

    A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    Get PDF
    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence

    A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    Get PDF
    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing

    Analysis of skin influence in identification of heroin using singular value decomposition

    Get PDF
    AbstractIn this paper, the influence of skin in energy-dispersive X-ray diffraction (EDXRD) spectrum of heroin was studied using singular value decomposition (SVD). The spectra of pure heroin, skin and heroin covered by skin were organized as matrices for SVD after truncation and smoothing. It was demonstrated that the two largest singular values and their corresponding left and right singular vectors of each matrix could reconstruct the matrix in the permissible error and contained enough information of the matrix. We extracted the two largest singular values of each matrix as two dimensions of the feature point of the corresponding spectrum. The feature points of different samples were clustered and a linear relationship was proved to be between and movement of feature point and thickness of component of skin, such as fat and muscle. This indicated that the method of SVD may be suitable for identification of heroin covered by skin

    The influence of X-ray wavelength and the simulative human skin and muscle obstruction on the detection of human body-hidden drugs by non-intrusive X-ray diffraction method

    Get PDF
    AbstractIn order to detect the body-hidden drugs non-intrusively and rapidly, the influence of the X-ray wavelength and covering of the simulative skin and muscle on the detection of methamphetamine sample by synchrotron radiation X-ray diffraction (SR-XRD) technique have been investigated. Synchrotron radiation based X-ray with three different wavelengths (1.29 Ã…, 1.54 Ã…, 1.80 Ã…) has been chosen as the X-ray source. The results indicate that the intensities as well as the number of the diffraction peaks of methamphetamine sample covered by simulative muscle decreased with the increasing of the X-ray wavelength from 1.29 Ã…to 1.80 Ã…. In addition, the intensities of the diffraction peaks for methamphetamine will be seriously affected by the covered simulative skin or muscle due to the X-ray absorption. Furthermore, the absorption of X-ray by the simulative muscle seems much stronger than that of the simulative skin. Moreover, the specific molecular structure of the methamphetamine sample has been obtained by X-ray diffraction method

    Deep Top-Down Proteomics Using Capillary Zone Electrophoresis-Tandem Mass Spectrometry: Identification of 5700 Proteoforms from the Escherichia coli Proteome

    Get PDF
    Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as a useful tool for top-down proteomics. However, its performance for deep top-down proteomics is still dramatically lower than widely used reversed-phase liquid chromatography (RPLC)-MS/MS. We present an orthogonal multidimensional separation platform that couples size exclusion chromatography (SEC) and RPLC based protein prefractionation to CZE-MS/MS for deep top-down proteomics of Escherichia coli. The platform generated high peak capacity (∼4000) for separation of intact proteins, leading to the identification of 5700 proteoforms from the Escherichia coli proteome. The data represents a 10-fold improvement in the number of proteoform identifications compared with previous CZE-MS/MS studies and represents the largest bacterial top-down proteomics data set reported to date. The performance of the CZE-MS/MS based platform is comparable to the state-of-the-art RPLC-MS/MS based systems in terms of the number of proteoform identifications and the instrument time

    Comparative Transcriptome Analysis Reveals an Efficient Mechanism for Α-Linolenic Acid Synthesis in Tree Peony Seeds

    Get PDF
    Tree peony (Paeonia section Moutan DC.) species are woody oil crops with high unsaturated fatty acid content, including α-linolenic acid (ALA/18:3; \u3e40% of the total fatty acid). Comparative transcriptome analyses were carried out to uncover the underlying mechanisms responsible for high and low ALA content in the developing seeds of P. rockii and P. lutea, respectively. Expression analysis of acyl lipid metabolism genes revealed upregulation of select genes involved in plastidial fatty acid synthesis, acyl editing, desaturation, and triacylglycerol assembly in seeds of P. rockiirelative to P. lutea. Also, in association with ALA content in seeds, transcript levels for fatty acid desaturases (SAD, FAD2, and FAD3), which encode enzymes necessary for polyunsaturated fatty acid synthesis, were higher in P. rockii compared to P. lutea. Furthermore, the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and ALA content, respectively, and modulated the final ratio 18:2/18:3 in the seed oil. In conclusion, we identified the key steps and validated the necessary desaturases that contribute to efficient ALA synthesis in a woody oil crop. Together, these results will aid to increase essential fatty acid content in seeds of tree peonies and other crops of agronomic interest

    Native Proteomics in Discovery Mode Using Size-Exclusion Chromatography–Capillary Zone Electrophoresis–Tandem Mass Spectrometry

    Get PDF
    Native proteomics aims to characterize complex proteomes under native conditions and ultimately produces a full picture of endogenous protein complexes in cells. It requires novel analytical platforms for high-resolution and liquid-phase separation of protein complexes prior to native mass spectrometry (MS) and MS/MS. In this work, size exclusion chromatography (SEC)-capillary zone electrophoresis (CZE)-MS/MS was developed for native proteomics in discovery mode, resulting in the identification of 144 proteins, 672 proteoforms, and 23 protein complexes from the Escherichia coli proteome. The protein complexes include four protein homodimers, 16 protein-metal complexes, two protein-[2Fe-2S] complexes, and one protein-glutamine complex. Half of them have not been reported in the literature. This work represents the first example of online liquid-phase separation-MS/MS for characterization of a complex proteome under the native condition, offering the proteomics community an efficient and simple platform for native proteomics

    Virus-induced gene silencing in the perennial woody Paeonia ostii

    Get PDF
    Tree peony is a perennial deciduous shrub with great ornamental and medicinal value. A limitation of its current functional genomic research is the lack of effective molecular genetic tools. Here, the first application of a Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in the tree peony species Paeonia ostii is presented. Two different approaches, leaf syringe-infiltration and seedling vacuum-infiltration, were utilized for Agrobacterium-mediated inoculation. The vacuum-infiltration was shown to result in a more complete Agrobacterium penetration than syringe-infiltration, and thereby determined as an appropriate inoculation method. The silencing of reporter gene PoPDS encoding phytoene desaturase was achieved in TRV-PoPDS-infected triennial tree peony plantlets, with a typical photobleaching phenotype shown in uppermost newly-sprouted leaves. The endogenous PoPDS transcripts were remarkably down-regulated in VIGS photobleached leaves. Moreover, the green fluorescent protein (GFP) fluorescence was detected in leaves and roots of plants inoculated with TRV-GFP, suggesting the capability of TRV to silence genes in various tissues. Taken together, the data demonstrated that the TRV-based VIGS technique could be adapted for high-throughput functional characterization of genes in tree peony
    corecore