7 research outputs found

    Dissecting Signaling Pathways that Regulate Axonal Guidance Effects of Sonic Hedgehog: A Dissertation

    Get PDF
    During development, axons respond to a variety of guidance cues in the environment to navigate to the proper targets. Sonic hedgehog (Shh), a classical morphogen, has been shown to function as a guidance factor that directly acts on the growth cones of various types of axons. We previously found that Shh affects retinal ganglion cell (RGC) axonal growth and navigation in a concentration-dependent manner. However, the signaling pathways that mediate such events are still unclear. In this thesis, we show that high concentrations of Shh induce growth cone collapse and repulsive turning of the chick RGC through rapid increase of Ca2+ in the growth cone, and specific activation of PKCα and Rho signaling pathways. We further found that integrin linked kinase (ILK) acts as an immediate downstream effector of PKCα. PKCα directly phosphorylates ILK in vitro at two previously unidentified sites threonine-173 and -181. Inhibition of PKCα, Rho, and ILK by pharmacological inhibitors and/or dominant-negative approaches abolished the negative effects of high-concentration of Shh. We provide evidence that Rho likely functions downstream of PKC and suggest that PKC, Rho and ILK may cooperatively mediate the negative effects of high concentrations of Shh. Furthermore, retroviral expression of dominant-negative constructs of PKCα (DN-PKCα) and ILK-double mutants (ILK-DM) resulted in misguidance of RGC axons at the optic chiasm in vivo. These results demonstrate that new signaling pathways composed of PKCα, Rho, and ILK play an important role in Shh-induced axonal chemorepulsion. In contrast, we show that attractive axonal turning in response to low concentrations of Shh is independent of PKCα, but requires the activity of cyclic nucleotides cAMP. Taken together, our results suggest that the opposing effects of Shh on axon guidance are mediated by different signaling pathways

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning

    No full text
    Macropinocytosis is a type of poorly characterized fluid-phase endocytosis that results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons through activation of a noncanonical signaling pathway, including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis but dependent on dynamin, myosin II, and Rho GTPase activities. Inhibitors of macropinocytosis also abolished the negative effects of Shh on axonal growth, including growth cone collapse and chemorepulsive axon turning but not turning per se. Conversely, activation of myosin II or treatment of phorbol ester induces macropinocytosis in the axons and elicits growth cone collapse and repulsive axon turning. Furthermore, macropinocytosis is also induced by ephrin-A2, and inhibition of dynamin abolished repulsive axon turning induced by ephrin-A2. Macropinocytosis can be induced ex vivo by high Shh, correlating with axon retraction. These results demonstrate that macropinocytosis-mediated membrane trafficking is an important cellular mechanism involved in axon chemorepulsion induced by negative guidance factors
    corecore