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Abstract 

 

During development, axons respond to a variety of guidance cues in the environment to 

navigate to the proper targets. Sonic hedgehog (Shh), a classical morphogen, has been 

shown to function as a guidance factor that directly acts on the growth cones of various 

types of axons. We previously found that Shh affects retinal ganglion cell (RGC) axonal 

growth and navigation in a concentration-dependent manner. However, the signaling 

pathways that mediate such events are still unclear. 

 

In this thesis, we show that high concentrations of Shh induce growth cone collapse and 

repulsive turning of the chick RGC through rapid increase of Ca2+ in the growth cone, 

and specific activation of PKCα and Rho signaling pathways. We further found that 

integrin linked kinase (ILK) acts as an immediate downstream effector of PKCα. PKCα 

directly phosphorylates ILK in vitro at two previously unidentified sites threonine-173 

and -181. Inhibition of PKCα, Rho, and ILK by pharmacological inhibitors and/or 

dominant-negative approaches abolished the negative effects of high-concentration of 

Shh. We provide evidence that Rho likely functions downstream of PKC and suggest that 

PKC, Rho and ILK may cooperatively mediate the negative effects of high 

concentrations of Shh. Furthermore, retroviral expression of dominant-negative 

constructs of PKCα (DN-PKCα) and ILK-double mutants (ILK-DM) resulted in 

misguidance of RGC axons at the optic chiasm in vivo. These results demonstrate that 

new signaling pathways composed of PKCα, Rho, and ILK play an important role in 

Shh-induced axonal chemorepulsion. 
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In contrast, we show that attractive axonal turning in response to low concentrations of 

Shh is independent of PKCα, but requires the activity of cyclic nucleotides cAMP. Taken 

together, our results suggest that the opposing effects of Shh on axon guidance are 

mediated by different signaling pathways. 
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Chapter I. Introduction 

Axon guidance 

During embryonic development, growing axons of neurons follow precise pathways to 

find appropriate target cells. The axons are guided by a variety of attractive and repulsive 

guidance cues present in the extracellular environment. Attractive guidance cues induce 

axonal turning towards them, while repulsive guidance cues repel axons away or cause 

axon retraction. The guidance cues can either be diffusible or membrane-bound. 

Diffusible cues are secreted from the source of synthesis and generate a gradient, acting 

over a long distance (Kennedy et al., 2006). Membrane-bound cues positioned at a 

precise location act over short distance when axons encounter them (Klein, 2005). 

Establishing the accurate patterns of axon navigation is crucial to nervous system 

development, and understanding how axons make precise pathfinding decisions may 

suggest new strategies to promote axon regeneration after injury or disease (Engle, 2010) 

(Giger et al., 2010). 

 

A palm-like structure termed the growth cone at the distal tip of the axon is considered as 

both a sensing unit to interpret the environmental signals, and a motor unit to steer the 

axon. Two major cytoskeleton components within the growth cone are actin 

filaments and microtubules, and they have been shown to be responsible for the motility 

of the growth cone (Dent and Gertler, 2003). Actin filaments are enriched in peripheral 

finger-like filopodia, whereas microtubules extended from the shaft of the axon are 

accumulated in the central domain of the growth cone. Guidance factors can interact with 

the receptors on the growth cone to initiate a series of signaling events, 
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Figure 1.1 Growth cone morphology and axon guidance. 

A, The growth cone is separated into two regions: the peripheral domain and the central 

domain. The peripheral domain contains lamellipodia and filopodia, and is composed 

primarily of actin filaments (phalloidin staining in red). The central domain is located in 

the center of the growth cone and is composed primarily of microtubules (anti-tubulin 

staining in green). The central domain also contains many organelles and vesicles of 

various sizes. B, The axons are guided by a variety of attractive and repulsive guidance 

cues presented in the extracellular environment. Attractive guidance cues induce axonal 

turning towards the cues, while repulsive guidance cues repel axon away from the cues. 
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leading to cytoskeleton rearrangement and subsequent movement of the growth cones 

(Dent and Gertler, 2003). The mechanisms of axon guidance have been well-studied in 

several conserved families of guidance factors including Slits, Ephrins, Netrins and 

Semaphorins (Chilton, 2006). Though these guidance factors have distinct signaling 

pathways, they share some common components and features to mobilize the growth 

cone (O'Donnell et al., 2009). Ca2+, cyclic nucleotides and Rho-GTPases have been 

shown to regulate both chemoattraction and chemorepulsion of the guidance cues. 

 

Due to the technical difficulties of manipulating Ca2+ concentration in vivo, the majority 

of experiments studying the roles of Ca2+ in axon guidance have been carried out on 

cultured neurons. In the resting state, growth cones maintain a baseline intracellular Ca2+ 

concentration. In vitro application of chemoattractants such as Netrins and BDNF (Brain-

derived neurotrophic factor) from a point source leads to growth cone Ca2+ elevation 

towards the source of the chemoattractants (Song et al., 1997, Hong et al., 2000) . 

Chemorepellents such as MAG (Myelin-associated glycoprotein) can also increase the 

Ca2+ concentration facing the source of the chemorepellents (Henley et al., 2004). 

However, chemorepellents generally induce a small Ca2+ elevation locally while 

chemoattractants induce a larger Ca2+ elevation globally, suggesting the amplitude of 

Ca2+ gradients across the growth cones are responsible for the turning decisions (Gomez 

and Zheng, 2006). Elevation of Ca2+ occurs when Ca2+ channels on the plasma membrane 

or on intracellular stores open to allow Ca2+ to flow into the cytosol. Further analysis 

indicated that different guidance cues can activate different categories of Ca2+ channels, 

possibly contributing to the local vs global Ca2+ elevation (Gomez and Zheng, 2006, 
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Bashaw and Klein, 2010), though the identities of some channels still remain elusive. The 

repulsive turning is induced when chemorepellents are applied from a point source, but 

bath application of the chemorepellents generally causes growth cone collapse, and it has 

been suggested that this causes a substantial overall elevation of Ca2+ within the growth 

cone (Bolsover, 2005, Gomez and Zheng, 2006), though detailed comparison hasn’t been 

performed. Therefore, it has been suggested that high and low Ca2+ elevation favor the 

negative effects of guidance cues, whereas moderate Ca2+ increase favors the positive 

effects of guidance cues. 

 

Furthermore, Ca2+ alone, independent of guidance cue activation, can mediate growth 

cone turning. It has been found that high extracellular gradients of a Ca2+-selective 

ionophore cause growth cone attraction, while low gradients of the ionophore cause 

growth cone repulsion in cultured Xenopus spinal neurons (Henley et al., 2004). 

Localized increase of Ca2+ by FLIP (focal laser-induced photolysis) is capable of 

inducing both attractive and repulsive turning, depending on the concentration of the 

extracellular Ca2+ (Zheng, 2000), further supporting the sole role of Ca2+ in axon 

guidance. 

 

A number of proteins have been identified to act downstream and mediate the effects of 

Ca2+ elevation in a spatiotemporally restricted manner. These effectors include Ca2+ 

/calmodulin dependent kinases and phosphatases, Ca2+ -activated proteases, cyclic 

nucleotides and Rho GTPases (Gomez and Zheng, 2006). Among them, cyclic 

nucleotides and Rho GTPases have been given more attention as they show signaling 
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crosstalk with Ca2+. For example, cyclic nucleotides can regulate Ca2+ concentration by 

controlling the activity of Ca2+ channels on the plasma membrane or on the ER.  

Conversely, Ca2+ can enhance the production of cyclic nucleotides through activation of 

soluble adenylyl cyclases and nitric oxide synthase (NOS) (Choi et al., 1992, 

Sculptoreanu et al., 1993). 

 

Earlier studies showed that Netrin- or BDNF-mediated attraction of Xenopus spinal 

neurites can be converted to repulsion when cAMP signalling is blocked by the 

membrane-permeable cAMP antagonist or a specific protein kinase A (PKA) inhibitor 

(Ming et al., 1997, Song et al., 1997). Conversely, Sema III or MAG triggered repulsive 

turning of Xenopus spinal neurites can be converted to attraction by activation of cGMP 

or cAMP signaling, respectively. Moreover, Sema III-induced growth cone collapse of rat 

dorsal root ganglion (DRG) can also be inhibited by activation of the cGMP pathway 

(Song et al., 1998). Shh-induced growth cone collapse of chick RGC is accompanied by a 

decrease of cAMPs in the growth cone (Trousse et al., 2001). These evidences suggests 

that an increase of cyclic nucleotide activity favors positive guidance effects while a 

decrease of cyclic nucleotide activity favors negative guidance effects. By varying the 

ratio of the membrane-permeable cAMPs and cGMPs,  later studies further indicated that 

the bi-directional turning decisions of growth cone to Netrin gradients is dependent on 

the relative ratio of cAMP and cGMP activities, with a high cAMP/cGMP ratio favors 

attraction, whereas a low cAMP/cGMP ratio favors repulsion (Nishiyama et al., 2003). 

Similar to Ca2+, cyclic nucleotides alone can mediate growth cone turning, localized 
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increase of intracellular cAMP by focal photolysis of caged cAMP induces growth cone 

attraction (Guirland et al., 2003). 

 

Rho-GTPases are another common signaling component shared by different axon 

guidance cues. The family includes Cdc42, Rac and Rho, whose roles have been 

extensively investigated in regulation of cytoskeleton dynamics and cell motility (Ridley, 

2001). Regulated by upstream Rho-GEFs (guanine nucleotide exchange factors) and 

Rho-GAPs (GTPase activating proteins), Rho-GTPases cycle between GDP-bound 

inactive state and GTP-bound active state.  Slits, Ephrins, Netrins and Semaphorins can 

all influence the activity of Rho-GTPases, but the activation degree of members of Rho-

GTPases varies. For instance, Slits, which normally induce growth collapse and axon 

repulsion, increase Rac and Rho activity but decrease active Cdc42 levels (Wong et al., 

2001, Fan et al., 2003). Netrins increase Rac and Cdc42 activity, but inhibit Rho activity 

when they induce axon attraction (Li et al., 2002, Gitai et al., 2003). In Xenopus spinal 

neurons, over-expression of dominant-negative Rac inhibits BDNF-induced attractive 

turning, whereas expression of dominant-negative Rho abolished LPA (lysophosphatidic 

acid)-induced repulsive turning (Yuan et al., 2003). Collectively, Rac/Cdc42 is generally 

associated with positive guidance effects but Rho with negative guidance effects. 

 

The differential activations of Rho-GTPases are also the consequences of specific 

modulation of Rho-GEF or Rho-GAP immediately upstream of Cdc42, Rac or Rho. For 

instance, Slit-induced Rac activation is mediated through a conserved Rac-GAP (Vilse) 

(Lundstrom et al., 2004), whereas Netrins-induced activation of Rac/Cdc42 is attributed 
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to Trio-GEF (Briancon-Marjollet et al., 2008). Additionally, different receptors of the 

same guidance cue may recruit different GEFs to accomplish the opposite activation of 

Rho-GTPases members. Receptors of semaphorins, Plexin-B1 and Plexin-A1, bind to 

PDZ-RhoGEF and FARP2-GEF, resulting in activation of Rho and Rac respectively in 

different cellular contexts (Driessens et al., 2002, Toyofuku et al., 2005). 

 

The downstream effectors of Rho such as ROCK (Rho-associated protein kinases) also 

play an important role in axon guidance.  ROCK is a key regulator of actin organization. 

A gradient of ROCK inhibitor Y-27632 is sufficient to induce attractive turning on 

Xenopus spinal neurons (Yuan et al., 2003). Inhibition of ROCK abolishes LPA-induced 

repulsive turning (Yuan et al., 2003), and blocks growth cone collapse induced by a 

group of guidance factors such as Ephrin-B2, -A5 or Semaphorin4A (Wahl et al., 2000, 

Yukawa et al., 2005, Petros et al., 2010), suggesting that Rho-ROCK signaling mainly 

mediates the negative effects of guidance cues. 

 

More recently, classical morphogens such as Shh, BMPs (bone morphogenetic proteins), 

and Wnt family proteins, which determine the differentiation of various cell types within 

a tissue in a concentration-dependent manner, have been shown to mediate axon guidance 

(Sanchez-Camacho and Bovolenta, 2009). A good example of morphogen functioning as 

axon guidance cue is Wnt family proteins, which were originally characterized as 

secreted proteins from the roof plate of the developing spinal cord to determine different 

cell types within dorsal-ventral axis (Chizhikov and Millen, 2005). Recent studies 

showed that Wnt4 and Wnt7b are expressed in an anterior-posterior gradient within the 
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ventral spinal cord to attract ascending commissural axons after they cross the ventral 

midline (Lyuksyutova et al., 2003). Wnt1 and Wnt5a are expressed in an anterior-

posterior gradient in the dorsal spinal cord and function as repellents for descending 

cortical motor axons (Liu et al., 2005). The attractive effect has been shown to be 

mediated by Wnt receptor Frizzled, whereas the repellent effect is mediated by another 

receptor, Ryk. BMPs and Shh have also been shown to mediate commissural axons 

navigation, with BMPs repelling commissural axons from the roof plate and Shh 

attracting these axons towards the floor plate (Butler and Dodd, 2003, Charron et al., 

2003) . The detailed mechanism of Shh-induced axon guidance will be introduced in the 

following section. 

 

Since actin filaments and microtubules are two major cytoskeletal components in the 

growth cones, a large body of research has focused on the mechanism by which guidance 

factors regulate the cytoskeletal rearrangement. However, an increasing number of 

reports have shown that endocytosis and exocytosis in the growth cone also play 

important roles in growth cone navigation (Tojima et al., 2007, Tojima et al., 2010, 

Kolpak et al., 2009). Experiments carried out in our lab have shown that negative 

guidance factors, such as Shh, can induce macropinocytosis in the growth cone, and 

inhibition of the macropinocytosis effectively abolished Shh-induced growth cone 

collapse and repulsive axon turning (Kolpak et al., 2009), suggesting that membrane 

trafficking events in response to guidance factors are critical for steering the growth cone. 
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Compared with clathrin- and caveolae- mediated endocytosis, macropinosomes are large 

vesicles with diameter from 0.2 μm to 1.0 μm, and can be easily labeled by fluid-phase 

endocytic markers such as dextran. The formation of the macropinosomes requires 

transient actin reorganization around the newly formed endocytic cup, as disassembly of 

actin filaments by cytochalasin D significantly reduced the formation of macropinosomes 

(Meier et al., 2002, Kolpak et al., 2009). The formation of the macropinosomes also 

requires several signaling components, including Rho-GTPases, p21-activated kinase, 

Src tyrosine kinase and PI3-kinase, though the requirement of these signaling 

components maybe cell-type specific (Swanson, 2008). For example, inhibition of PI3K 

signaling by wortmannin or LY294002 markedly decreased macropinocytosis in 

macrophages (Arali et al., 1996), but not in the growth cones of RGC cells (Kolpak et al., 

2009). Dynamin, a small GTPase involved in the scission of newly formed vesicles from 

the membrane, is required for macropinocytosis as well. We previously showed that 

dynasore (a specific inhibitor of dynamin) and dynamin inhibitory peptide significantly 

decreased Shh-induced dextran uptake, suggesting that macropinocytosis in RGC axons 

requires the function of dynamin (Kolpak et al., 2009). 

 

In summary, considerable progress has been made in defining the mechanisms of how 

guidance factors affect axon navigation. Studies from receptor level, second messenger 

level, cytoskeleton and membrane trafficking level provide abundant insight into the 

complex wiring specificity of axons, yet many questions remained unanswered. A better 

understanding of how the precise connectivity patterns of axon are established will shed 

light on many neural developmental disorders. 
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The retinotectal system 

The eye is a light-sensing organ that receives and transmits visual information to the 

central nervous system (CNS). During development, a series of axon navigation events 

takes place to ensure that visual information is correctly relayed to the CNS targets. The 

mature retina is composed of six neuronal cell types and one glial cell type that are 

organized into different cellular layers with RGCs located at the vitreal side of the retina. 

RGCs are the only retinal neurons to project their axons out of the retina and into the 

brain. Due to its stereotypical projection, the navigation of RGC axons to their proper 

targets provides an ideal model system for studying axon guidance. 

 

RGCs are the first cell type to differentiate during vertebrate retinogenesis. Their 

differentiation begins in the central region of the retina and gradually extends towards the 

periphery, thus forming a central to peripheral gradient of RGC differentiation. The 

progressive RGC differentiation is accompanied by the corresponding axonogenesis 

(Goldberg and Coulombre, 1972). All RGCs extend their axons towards the optic disc in 

the center where the RGC axons converge and exit the eye; therefore, axons emanating 

from more peripheral retina have to travel a longer distance to reach the exit point. The 

navigation of axons within the retina is called “intraretinal axon targeting”. To insure that 

RGC axons correctly project towards the optic disc, it has been found that a number of 

molecules are expressed in a gradient fashion within the retina to facilitate axon 

guidance.  For example, chondroitin sulfate proteoglycans (CSPGs) (Brittis et al., 1992) 

and Zic3 (Zhang et al., 2004) are expressed high in the periphery but low in the retina 

center, acting as negative factors to repel axons towards the optic disc, while Shh is 
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Figure 1.2 The retinotectal system 

A, Diagram of intraretinal axon pathfinding. A segment of retina is shown, with vitreal 

surface up. RGCs are located at the vitreal side of the retina and their axons project to the 

optic disc in a wave-like fashion beginning from the center of the retina. Coordinated 

effects of several positive factors (++++) and negative factors (-----) ensure axon 

projection to the optic disc. B, Diagram of RGC axons crossing at the chiasm of fish and 

bird. After RGC axons reach the optic disc (od), they converge and exit the eye to form 

the optic nerve (on). RGC axons further project towards the midline where they cross at 

the chiasm. In chick and fish, the entire axonal population from one eye projects 

contralaterally into the brain, whereas in higher vertebrate species, axons from temporal 

retina do not cross the midline but project ipsilaterally (not shown).  Several negative 

guidance factors are expressed around the chiasm region to facilitate the local navigation 

process. N, nasal; T, temporal; V, ventral; D, dorsal; ot, optic tract; GCL, ganglion cell 

layer. 
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expressed low in the periphery and high in the center of retina, acting as a positive factor 

to attract axons to the optic disc (Kolpak et al., 2005). Peripheral axons that have to travel 

a longer distances to reach the retinal center can fasciculate with the pioneer axons ahead 

of them by expressing cell and substrate adhesion molecules such as L1, which exhibits 

homophilic binding activity (Van Vactor, 1998). To prevent centripetally growing axons 

extend to the opposite side of the retina after they reach the optic disc, studies from mice 

showed that axons from the dorsal retina encounter an increasing expression of EphB 

family protein at the ventral retina, which limits the bypass of axons at the optic disc 

(Birgbauer et al., 2000). 

After RGC axons reach the optic disc, they exit the eye and form the optic nerve. The 

optic nerves from left and right eyes further project towards each other to meet at the 

ventral midline of the diencephalon, where they form an X-shaped intersection known as 

the optic chiasm. In higher vertebrate species, RGC axons originating from nasal retina 

cross the midline to project contralaterally, while axons from temporal retina do not cross 

the midline but project ipsilaterally to implement binocular vision.  In fishes and birds, 

the entire axonal populations from one eye cross the midline to project contralaterally 

into the brain. 

The mechanism determining whether RGC axons cross the midline has been explored in 

both mammals and non-mammalian vertebrates. The optic chiasm has been shown to be 

the source of several guidance factors, such as Slits, Ephrins, Semaphorins and Shh, 

which guide crossed or uncrossed axons. In mice, Slit1 and Slit2 are expressed in a 

complementary fashion near the chiasm, around the cross of the optic nerve.  Slit1/Slit2 
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double knockouts mice show misprojected axons wandering before and after the chiasm. 

In vitro, both Slit proteins repel RGC axons (Plump et al., 2002). These data suggest that 

repulsion from Slit1/Slit2 limits the escape of axons from their normal path at the chiasm. 

For Ephrin family, ephrin-B2 is expressed in the radial glial cells located within the 

chiasm midline. Its receptor, EphB1, is exclusively expressed in the ventral-temporal 

retina, from where axons normally projects ipsilaterally. EphB1 knockout mice show 

significant reduction of ipsilateral projection, suggesting that chiasmatic ephrin-B2 is 

repulsive to ipsilateral but not contralateral projecting axons (Williams et al., 2003). 

However, in chick, ephrin-B expression is not detected at the ventral midline of the 

diencephalon. Since chick RGC axons only project contralaterally, it is possible that 

ephrin-B is not involved in the pathfinding for chick RGC axons. 

Originally identified as a classical morphogen, Shh was recently shown to play an 

important role in restricting RGC axons projection at the chiasm (Trousse et al., 2001, 

Sanchez-Camacho and Bovolenta, 2008). In E2.5-E3 chick, when few RGCs have 

differentiated in the retina, Shh is expressed continuously in the entire ventral midline; at 

E5 and later, when newly formed axons reach the chiasm, Shh expression disappears 

from the chiasm but borders the anterior and posterior edges of the chiasm, suggesting 

that the spatio-temporal downregulation of Shh expression at the chiasm may be 

important for the correct navigation of axons (Trousse et al., 2001). This was confirmed 

by the fact that over-expression of Shh at the chiasm region resulted in prevention of 

RGC axons from reaching the region (Trousse et al., 2001). Conversely, loss of function 

study performed in mice, by neutralizing Shh protein at the chiasm region with anti-Shh 

antibody, leads to a widening of axon bundles at the chiasm and an increase of erroneous 
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axon projection into the ipsilateral tract and contralateral nerve (Sanchez-Camacho and 

Bovolenta, 2008). Collectively, these results indicate that upon arrival of RGC axons to 

the chiasm, Shh expression at the chiasm border restricts contralaterally projecting axons 

within the bundle. However, up to the present, no signaling mechanism of Shh involved 

in this process has been reported. 

After RGC axons cross at the chiasm, they further project to the brain and eventually 

reach the superior colliculus in mammals or the optic tectum in non-mammalian 

vertebrates. Recent studies have shown that Ephrin and Wnt family proteins play 

important roles in the final axon navigation process (Flanagan, 2006). 

 

The Sonic hedgehog signaling pathway and axon guidance 

The hedgehog family includes three members in mammals: Sonic hedgehog (Shh), Desert 

hedgehog (Dhh) and Indian hedgehog (Ihh). Shh is the most extensively investigated 

member among the three. Synthesized as a 45kDa precursor protein, Shh protein 

undergoes autoproteolytical cleavage to generate a 19kDa N-terminal fragment (Shh-N) 

possessing signaling bioactivity, and a C-terminal fragment (Shh-C) possessing protease 

activity. Shh-N is then further modified by cholesterol modification at the C-terminus and 

palmitoylation at the N-terminus. These two modifications are believed to enhance the 

potency and diffusion of the protein (Nybakken and Perrimon, 2002) . 

 

Though the Hedgehog gene was first identified in a screen of genes that control the 

segmentation pattern of Drosophila melanogaster, mammalian homologs of the 
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Hedgehog genes appear to play broad roles during embryonic development. The roles of 

Shh were extensively studied in the patterning of the neural tube. In the developing 

vertebrate neural tube, Shh is secreted from the notochord and floor plate at the ventral 

midline and spreads dorsally into the neural tube in a graded fashion to induce the 

differentiation of diverse cell types in the dorsal–ventral axis of the neural tube (Patten 

and Placzek, 2000). The effects of Shh on cell fate determination are mediated through a 

transcription-dependent signaling pathway, where binding of Shh to its receptor, Patched 

(Ptc), a 12-transmembrane protein, relieves the inhibition of Ptc on the co-receptor 

Smoothened (Smo), a serpentine protein resembling G-protein associated receptors. 

Activated Smo subsequently induces translocation of a family of Gli transcription factors 

into the nucleus where they regulate the expression of target genes. 

 

The mechanism by which gradients of Shh specify distinct cell fates in the developing 

spinal cord is not fully understood. But it has been proposed that a negative feedback 

mechanism, involving target genes transcriptionally regulated by Shh, is responsible for 

the appropriate response of cells to graded Shh. For example, Ptc is not only the 

transducer of Shh signaling, but also a target of Shh signaling. The up-regulation of 

the Ptc gene and its subsequent increase of protein expression at the cell surface 

sequesters Shh ligand, limiting its spread in the tissues and the level of Shh signaling in 

the target field (Ribes and Briscoe, 2009). 
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Figure 1.3. The canonical sonic hedgehog signaling pathway. 

The canonical Shh signaling pathway involves two transmembrane proteins, Ptc and Smo. 

In the absence of ligand, Ptc inhibits Smo via an unknown mechanism. In the presence of 

ligand, inhibition of Smo by Ptc is relieved, leading to translocation of Gli transcription 

factors into the nucleus where they activate the expression of target genes. The 

transcription-dependent pathway is mainly responsible for cell fate determination and 

tissue patterning. 
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More recently, Shh has been shown to act as a guidance factor to direct axonal projection. 

It plays important roles in the pathfinding of commissural axons towards the floor plate, 

along the longitudinal axis of the spinal cord, and in the guidance of retinal ganglion cell 

(RGC) axons toward the optic disc and at the optic chiasm (Trousse et al., 2001, Charron 

et al., 2003, Bourikas et al., 2005, Kolpak et al., 2005, Sanchez-Camacho and Bovolenta, 

2008). The guidance effects of Shh occur through binding to different receptors and are 

independent of its canonical signaling pathway (Sanchez-Camacho and Bovolenta, 2009). 

In addition to Ptc, five new receptors have been found to directly bind to Shh. These 

receptors include Boc (Bi-directional Cdon-binding protein) (Tenzen et al., 2006), Cdo 

(Cell adhesion molecule-related/downregulated by oncogenes) (Tenzen et al., 2006), Hip 

(Hedgehog interacting protein) (Chuang and McMahon, 1999), Gas1 (Growth arrest-

specific 1) (Allen et al., 2007) and megalin (McCarthy et al., 2002). Among these 

receptors, Boc and Hip have been shown to play roles in Shh-induced axon guidance. 

 

In the developing neural tube of mice and rats, floor plate-derived Shh, in collaboration 

with netrin-1, can act as a chemoattractant to attract dorsal commissural axons towards 

the ventral midline (Charron et al., 2003). Boc and Cdo were investigated as candidate 

receptors of Shh in guiding commissural axons because their extracellular domains share 

a high degree of homology with those of other axon guidance receptors, such as Slit 

receptor Robo and netrin receptor Deleted in Colorectal Cancer (DCC). Both Cdo and 

Boc are expressed in the progenitors of commissural neurons at the dorsal neural tube, 

but Boc expression covers more ventrally and can be detected in differentiated 

commissural neurons when their axons approach the midline. Further analysis in mice 
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showed that genetic loss of Boc, but not Cdo, resulted in deviation of commissural axons 

trajectories in the neural tube, a phenotype similar to that of Smo knock-out mice, 

suggesting that Boc receptor is responsible for Shh-induced projection of commissural 

axons (Okada et al., 2006). Similar experiments carried out in zebrafish, where injection 

of antisense morpholinos against Boc also resulted in defects in the dorsoventrally 

projecting axons (Connor et al., 2005). Though Cdo knock-out mice exhibit 

holoprosencephaly, a developmental defect often associated with mutations in the Shh 

signaling pathway (Zhang et al., 2006), whether Cdo is involved in axon guidance is 

currently unknown. 

 

The attractive effect of Shh on commissural axons is believed to be mediated through a 

non-canonical transcription-independent pathway. In vitro, dissociated rat commissural 

axons turn towards Shh gradients within minutes after the application of Shh, too quickly 

to attribute to a transcriptional effect. Furthermore, the attractive turning cannot be 

abolished by pre-treatment of transcription inhibitor actinomycin D or by repression of 

Gli-mediated transcription (Yam et al., 2009). However, the attractive turning seemed to 

require the activation of Src family kinases (SFKs) by Shh, as Shh treatment acutely 

increased the phosphorylation of SFKs in the growth cone of commissural axons, and the 

attractive turning is abolished by pre-treatment with PP2, a chemical inhibitor of SFKs, 

or by over-expressing a negative regulator of SFKs in the commissural neurons (Yam et 

al., 2009). Additionally, activation of SFKs by Shh required expression of Boc at the cell 

surface (Yam et al., 2009). However, Boc knock-out mice did not show obvious 

disruption of the spinal cord patterning. Taken together, these data suggest that the 
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Figure 1.4. The sonic hedgehog signaling and axon guidance in the neural tube. 

In the developing neural tube, floor plate-derived Shh forms a ventral to dorsal gradient, 

and acts as a chemoattractant to attract dorsal commissural axons towards the ventral 

midline. This guidance activity of Shh (shown as “+”) is dependent on Smo, Boc receptor 

and downstream SFKs in a transcription-independent manner. After reaching the floor 

plate, commissural axons across the midline, turn, and migrate anteriorly. Shh, expressed 

in a posterior to anterior gradient repels postcommissural axons to grow anteriorly. This 

repulsive effect of Shh (shown as “-”) is dependent on Hip receptor alone. RP, roof plate; 

FP, floor plate; A, anterior; P, posterior; D, dorsal; V, ventral. 
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guidance activity of Shh on commissural axons is mediated by Boc receptor and 

downstream SFKs in a transcription-independent manner, and does not rely on cell fate 

changes within the spinal cord. 

 

Gas1 is a glycosylphosphatidylinositol-linked membrane glycoprotein, initially identified 

through a screening of mouse somitic gene products that can directly bind to Shh (Lee et 

al., 2001). Gas1 is also expressed in the commissural axons and Gas1 null embryos 

exhibit aberrant axonal projection. But Gas1-mutants also exhibit defects in spinal cord 

patterning. Therefore, it is still unclear whether Gas1 directly mediates axon steering in 

response to Shh (Allen et al., 2007). 

 

The role of the Hip receptor in Shh-induced axon guidance was investigated in chick 

spinal cord (Bourikas et al., 2005). Hip, but not Ptc and Smo, is expressed in the 

postcommissural axons after commissural axons cross the floor plate and navigate 

rostrally. Disruption of Shh function by anti-Shh antibody or RNAi interference resulted 

in abnormal projection of the postcommissural axons. RNAi knock-down of Hip, but not 

Ptc and Smo, caused similar phenotype as that of Shh knock-down, suggesting that Hip is 

required for Shh-mediated postcommissural axons navigation independent of the Ptc and 

Smo. In this system, Shh is considered as a negative guidance cue for postcommissural 

axons because over-expression of Shh in the spinal cord caused postcommissural axons 

to stop or turn away from the high level of Shh source. Again, knock-down of Hip did not 

change the patterning or cell differentiation within the spinal cord, suggesting that the 

repellent effect of Shh on postcommissural axons is direct (Bourikas et al., 2005). How 
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Hip mediates Shh-induced axon guidance is currently unclear as Hip is a type-1 

transmembrane glycoprotein lacking an intracellular domain (Chuang and McMahon, 

1999). It had been proposed that Hip may attenuate hedgehog signaling by competing 

with Ptc for Shh binding (Bosanac et al., 2009). 

 

As described earlier, spatial-temporal regulation of Shh expression at the center of 

chiasm region may constrain RGC axons within the bundles, but the signaling 

mechanism mediating this response is still unclear. A recent study in mice showed that 

Boc is expressed in a subset of RGC cells whose axons project ipsilaterally and knock-

down of Boc reduced the number of ipsilateral axons (Fabre et al., 2010). However, in 

chick and fish, all RGC axons navigate contralaterally, it remains to be determined if Boc 

is necessary for such process. 

 

During the past several years, a large body of studies has shown that Shh can regulate a 

variety of cellular functions beyond axon guidance through new signaling pathways. For 

examples, PI3K/Akt signaling was demonstrated to be essential for Shh-dependent neural 

patterning (Riobo et al., 2006). ERK signaling can be activated by Shh to promote cell 

proliferation and differentiation in several cell types (Osawa et al., 2006, Elia et al., 2007). 

Through Rho signaling, Shh also modulates angiogenesis (Renault et al., 2010), epithelial 

morphogenesis (Kim et al., 2009) and cell migration (Renault et al., 2010). The effects of 

Shh on these cellular functions are largely independent of Gli-mediated transcription, 

suggesting the response of cells to Shh can be programmed through canonical and non-

canonical signaling separately (Jenkins, 2009). 
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The Protein kinase C family 

Protein kinase C (PKCs) is a family of serine/threonine kinases that plays a pivotal role in 

mediating G protein-coupled receptor and other growth factor-dependent cellular 

responses (Newton, 1995, Dempsey et al., 2000). PKC isoforms are classified into 

conventional PKCs (α, βI, βII, γ), novel PKCs (δ, ε, η, θ) and atypical PKCs (ζ, λ), 

mainly based on their differences in the regulatory domain and second messenger(Ca2+) 

requirements (Steinberg, 2008). All PKCs contain a variable N-terminus regulatory 

domain and a highly conserved C-terminus kinase domain. The regulatory domain of all 

PKCs contains a C1 sub-domain, which functions as a phobol 12-myristate 13-acetate 

(PMA)/diacylglycerols (DAG) binding motif for conventional and novel PKCs. The C1 

sub-domain of atypical PKCs is atypical, and it binds to PIP3 (phosphatidylinositol 3,4,5-

trisphosphate), ceramide or PB1 domain containing proteins. Conventional and novel 

PKCs also have a C2 sub-domain, which contains recognition sites for acidic 

phospholipids. However, the C2 sub-domain of conventional PKCs binds to 

phospholipids in a Ca2+ -dependent manner, while novel PKCs do not. The structural 

differences determine that conventional PKCs require Ca2+ and PMA/DAG for their 

activation, novel PKCs only require PMA/DAG, and atypical PKCs require neither. 

 

The traditional view of conventional PKC activation begins with external agonists 

binding to the corresponding receptors, which then leads to activation of phospholipase C 

(PLC). PLC cleaves phosphoinositol-4,5-bisphosphate (PIP2) into 1,2-diacylglycerol and 

inositol-1,4,5-trisphosphate (IP3). The IP3 binds to the ER-based Ca2+ channels which 

release Ca2+ into the cytoplasm where Ca2+ binds to the C2 sub-domain of the 
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Figure 1.5 The protein kinase C 

A, Domain structure of protein kinase C isoforms. All PKCs contain an N-terminus 

regulatory domain and a C-terminus kinase domain. PMA/ DAG binds to the C1 sub-

domain of the conventional and novel PKCs, while Ca2+ only binds to the C2 sub-domain 

of conventional PKCs. The structural differences determine that conventional PKCs 

require Ca2+ and PMA/DAG for their activation, whereas novel PKCs only require 

PMA/DAG. The catalytic domain of all PKCs contains three highly conserved 

phosphorylation sites that are critical for the catalytic activity of PKCs. B, The activation 

process of the conventional PKCs. Agonists-induced receptor activation lead to a series 

of signaling events that ultimately release Ca2+ from the ER to the cytoplasm. Binding of 

Ca2+ to the C2 domain of the PKC enhance its membrane affinity. Cytosolic PKC 

translocates to the plasma membrane where DAG binds to the C1 domain of PKC, fully 

activating the protein. 
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conventional PKCs and increases the affinity of the PKCs with the plasma membrane. 

PKCs then translocate to the membrane where their C1 sub-domain interacts with 

membrane-bound DAG. PKC translocation to the plasma membrane has generally been 

considered as the hallmark of its activation. 

 

The catalytic domains of all PKCs are highly conserved, and each catalytic domain 

contains three phosphorylation sites that are critical for the catalytic activity of PKCs. 

The first phosphorylation site of PKCs is a threonine residue (T497 in PKCα) within the 

activation loop. The kinase that is responsible for phosphorylation of this site is Protein 

Kinse D-1(PKD-1) and the phosphorylation of this residue is believed to stabilize the 

active conformation of the PKCs. Once threonine is phosphorylated, PKCs undergo two 

additional serine/threonine phosphorylations (T638/S657 in PKCα) in the V5 sub-domain. 

For conventional and novel PKCs, these phosphorylations steps are autophosphorylation 

events and are believed to mature and enhance the catalytic activity of this enzyme. 

 

Because there is no convenient way to activate an individual isoform of PKC, PMA, 

which mimics the function of DAG, is widely used to evaluate the functions of PMA-

sensitive PKCs, including conventional and novel PKCs. Emerging evidence indicates a 

general role of PKCs in axon guidance. When applied uniformly into neuronal cultures, 

PMA lead to growth cone collapse (Bonsall and Rehder, 1999, Zhou and Cohan, 2001); 

when pulsed from the side of the growth cones, PMA caused repulsive turning (Xiang et 

al., 2002, Kolpak et al., 2009). However, it is inconclusive from these experiments 

whether different PKC isoforms regulate the axonal repulsive effects synergistically or 
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individually. Studies focusing on physiologically relevant axon guidance proteins 

demonstrate that a PKC isoform-specific mechanism underlies the axonal guidance 

effects in response to different cues. For example, thrombin and protein tyrosine 

phosphatase μ (PTPμ)-induced growth cone collapse of rat dorsal root ganglion axons 

and chick RGC axons resulted from selective activation of novel PKCε and PKCδ, 

respectively (Mikule et al., 2003, Ensslen and Brady-Kalnay, 2004); while Wnt-mediated 

attractive guidance of rat commissural axons required atypical PKCζ (Wolf et al., 2008). 

 

A novel PKCδ was shown to be specifically required for the transcriptional regulation of 

Gli and Ptc (Riobo et al., 2006a), suggesting a PKC isoform is involved in Shh canonical 

signaling pathway. We previously showed that PMA and Shh elicit similar negative 

guidance effects on chick RGC axons and the effects are likely to be transcription-

independent. One of the major aims of our work is to identify which PKC isoform 

mediates Shh-induced axon guidance. 

 

The Integrin-linked kinase 

Integrin-linked kinase (ILK) was first identified in a yeast-two-hybrid screen as a direct 

binding protein to the cytoplasmic tail of β1 and β3 integrins (Hannigan et al., 1996). 

Since integrins are the major cell surface proteins that interact with the extracellular 

matrix and that themselves lack enzymatic activity, the finding of ILK as a kinase that 

directly binds to integrin drew a lot of attention. Indeed, it has been found that ILK plays 

many important roles in integrin-mediated cell adhesion, spreading, migration, and 

signaling (Hannigan et al., 2005). However, the function of ILK isn’t restricted to 
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relaying integrin signaling. Increasing evidence has suggested that ILK can function 

independent of integrin (Vespa et al., 2003, Fielding et al., 2008, Fielding et al., 2011). 

For example, ILK co-localizes with several centrosomal and mitotic spindle proteins such 

as ch-TOG and RUVBL, and the protein complex plays an essential role in mitotic 

spindle assembly and mitosis (Fielding et al., 2008). 

 

ILK is highly evolutionarily conserved and is composed of three structurally distinct 

domains: an N-terminal domain containing ankyrin repeats, a pleckstrin homology (PH)- 

like domain in the middle and a C-terminal putative serine/threonine kinase-like domain 

(Dedhar et al., 1999). The N-terminus of ILK consists of five ankyrin repeats, the first of 

which mediates direct interaction with PINCH (particularly interesting new cysteine- 

histidine protein), a family of LIM domain containing adaptor proteins that bind to ILK 

before the recruitment of the complex to focal adhesion sites. The N-terminus of ILK also 

directly binds to ILK-associated protein (ILKAP), a PP2C family phosphatase. PINCH 

and ILKAP may facilitate the ILK phosphorylation on downstream Akt and GS3Kβ 

(Fukuda et al., 2003, Kumar et al., 2004). The central PH-like domain of ILK has been 

shown to bind phosphatidylinositol-3,4,5-trisphosphate (PIP3) and is involved in growth 

factor-induced,  PI3K-dependent activation of ILK (Delcommenne et al., 1998). 

 

The C-terminus kinase-like domain exhibits significant sequence homology to Ser/Thr 

protein kinases, but lacks several critical residues required for eukaryotic protein kinase 

activity (Hanks et al., 1988). Since its discovery, the kinase activity of ILK has been 

subjected to debate and controversy. Recombinant ILK expressed in bacteria or purified 
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Figure 1.6 The integrin-linked kinase 

ILK is composed of three domains: an N-terminal domain that binds PINCH and ILKAP, 

a PH-like domain in the middle that binds PIP3, and a C-terminal putative kinase-like 

domain that binds a variety of proteins including parvins and paxillin. ILK may possess 

kinase activity; several mutations (R211A, K220A and S343A) within the PH and kinase 

domain have been shown to abolish its kinase activity, but the conclusion remains 

controversial. ILK mainly functions as an “adaptor” to provide a platform for coupling 

integrin signaling to actin rearrangement. 
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ILK from cell extracts has been shown to phosphorylate a number of substrates in vitro, 

including the cytoplasmic tail of β1 and β3 integrin, AKT/PKB, GSK3β, myosin light 

chain (MLC), as well as the model substrate myelin basic protein (Hannigan et al., 1996, 

Delcommenne et al., 1998, Persad et al., 2001, Muranyi et al., 2002). Moreover, 

mutational analysis of ILK with R211A mutation in PIP3 binding site, K220A/M 

mutation in the putative ATP-binding site, and S343A mutation in the potential 

autophosphorylation site all result in catalytically inactive ILK in vitro (Persad et al., 

2001, Filipenko et al., 2005). In the above studies, phosphorylation of AKT/PKB and 

GSK3β has been extensively used as readout of ILK kinase activity. However, evidence 

of ILK kinase activity in vivo is weak. Mice carrying the above point mutations do not 

show change of AKT/PKB or GSK3β phosphorylation (Lange et al., 2009). Deletion of 

the ilk gene in mouse chondrocytes (Grashoff et al., 2003) and keratinocytes (Sakai et al., 

2003) do not change AKT/PKB or GSK3β phosphorylation level either. In Drosophila 

melanogaster and Caenorhabditis elegans, expressing inactive kinase ILK does not show 

any phenotype, but can fully rescue the phenotypes caused by deletion of the ilk gene 

(Zervas et al., 2001, Mackinnon et al., 2002), further suggesting the kinase activity of 

ILK probably does not exist in vivo. At present, there is no explanation to reconcile the 

conflicting observations. It could be that the catalytic activity of ILK is not general, rather 

species-specific, tissue-specific and cell-type specific. 

 

In addition to the cytoplasmic tails of integrin, the C-terminal domain of ILK can bind to 

several actin-associated proteins such as parvin family proteins (α, β, and γ-parvin) and 

paxillin (Legate et al., 2006). These interactions link ILK signaling to the regulation of 
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the actin cytoskeleton. Inhibition of ILK activity causes disorganized actin cytoskeleton 

that results in defects in cell migration and cell adhesion (Sakai et al., 2003, Qian et al., 

2005, Fan et al., 2009). 

 

The study of ILK function in neuronal cells is limited. ILK protein is enriched in the 

growth cone of DRG and hippocampal neurons (Mills et al., 2003, Guo et al., 2007b). By 

using pharmacological inhibitor, siRNA knock-down, dominant-negative ILK and 

genetic deletion strategies, it has been shown that ILK is responsible for neurite 

outgrowth (Ishii et al., 2001, Mills et al., 2003), neuronal polarity formation (Guo et al., 

2007b, Oinuma et al., 2007) and CNS myelination (Chun et al., 2003).  However, 

whether ILK is involved in axon guidance is not clear. 
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Chapter II. Protein kinase Cα and integrin-linked kinase mediate negative axonal 

guidance effects of Sonic Hedgehog 
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ABSTRACT 

In addition to its role as a morphogen, Sonic hedgehog (Shh) has also been shown to 

function as a guidance factor that directly acts on the growth cones of various types of 

axons.  However, the noncanonical signaling pathways that mediate the guidance effects 

of Shh protein remain poorly understood. We demonstrate that a novel signaling pathway 

consisting of protein kinase Cα (PKCα) and integrin-linked kinase (ILK) mediates the 

negative guidance effects of high concentration of Shh on retinal ganglion cell (RGC) 

axons.  Shh rapidly increased Ca2+ levels and activated PKCα and ILK in the growth 

cones of RGC axons.  By in vitro kinase assay, PKCα was found to directly 

phosphorylate ILK on threonine-173 and -181.  Inhibition of PKCα or expression of a 

mutant ILK with the PKCα phosphorylation sites mutated (ILK-DM), abolished Shh-

induced macropinocytosis, growth cone collapse and repulsive axon turning.  In vivo, 

expression of a dominant negative PKCα or ILK-DM disrupted RGC axon pathfinding at 

the optic chiasm but not the projection toward the optic disc, supporting that this 

signaling pathway plays a specific role in Shh-mediated negative guidance effects. 
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INTRODUCTION 

Sonic hedgehog (Shh), a well characterized morphogen, has recently been shown to act 

as a guidance factor to direct axonal projection. Shh signaling plays important roles in the 

pathfinding of commissural axons towards the floor plate, along the longitudinal axis of 

the spinal cord, and in the guidance of retinal ganglion cell (RGC) axons toward the optic 

disc and at the optic chiasm (Trousse et al., 2001, Charron et al., 2003, Bourikas et al., 

2005, Kolpak et al., 2005, Sanchez-Camacho and Bovolenta, 2008, Fabre et al., 2010).  

We previously demonstrated that Shh plays a dual role in chick RGC axon growth and 

guidance, acting as a positive factor at a lower concentration and as a negative factor at a 

higher concentration in vitro (Kolpak et al., 2005, Kolpak et al., 2009). Shh can act 

directly on the growth cones in a transcription-independent manner, causing growth cone 

collapse and repulsive axon turning of chick RGCs through Rho-GTPases (Kolpak et al., 

2009), and inducing attractive axon turning of rat commissural neurons through the Src 

family kinase (Yam et al., 2009). 

 

Protein kinase C (PKC) is a family of serine/threonine kinases that are classified into 

conventional PKCs (α, βI, βII, γ), novel PKCs (δ, ε, η, θ) and atypical PKCs (ζ, λ), based 

on their second messenger requirements (Steinberg, 2008). Conventional PKCs require 

Ca2+ and diacylglycerols (DAG) for activation, while novel PKCs require DAG only and 

atypical PKCs require neither.  PKCδ was shown to be involved in the Shh canonical 

signaling cascade, required for the transcriptional regulation of Gli and Patched-1 (Riobo 

et al., 2006a).  Activation of conventional and novel PKCs by phorbol myristate acetate 

(PMA) elicits repulsive axon turning of Xenopus spinal neurons and chick RGCs (Xiang 
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et al., 2002, Kolpak et al., 2009).  However, the roles of specific PKC isoforms and their 

substrates in axon guidance are not completely understood. 

 

Integrin-linked kinase (ILK), first identified in a yeast-two-hybrid screen as a direct 

binding protein to the cytoplasmic tail of β1 integrin, has been implicated in cancer cell 

growth and survival through modulation of downstream targets (Hannigan et al., 2005). 

By binding to PINCH, parvin and other proteins, ILK functions as an “adaptor” to 

provide a platform for coupling cell adhesion and growth factor signaling.  In neurons, 

expression of dominant-negative constructs of ILK (E359K or S343A) inhibits neurite 

outgrowth (Ishii et al., 2001, Mills et al., 2003) and neuronal polarity determination (Guo 

et al., 2007).  However, the role of ILK in axon guidance has not been reported. 

 

Here, we demonstrate that a novel signaling pathway composed of PKCα and ILK 

mediates the negative effects of a high concentration of Shh on chick RGC axons.  Shh 

rapidly increased Ca2+ levels, activated PKCα, leading to phosphorylation of ILK in the 

growth cones of RGC axons.  Disruption of PKCα and ILK signaling pathway abolished 

the negative guidance effects of Shh on RGC axons and resulted in aberrant RGC axon 

pathfinding at the optic chiasm in vivo, demonstrating a critical role of this pathway in 

Shh-mediated axon guidance. 
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MATERIALS AND METHODS 

Antibodies and constructs: Anti-PKCα, βI, δ, ζ, µ and anti-Phospho-PKCα (Ser657) 

were obtained from Santa Cruz Biotechnology. Anti-Phospho-PKC (pan), anti-Phospho-

ILK (Thr173) and anti-integrin β1 pTpT788/789 were purchased from Cell Signaling, 

Abgent and Invitrogen, respectively. Anti-GAP-43 and recombinant PKCα were from 

Millipore. Dominant-negative PKCα (Soh and Weinstein, 2003) and RCASBP-Y DV 

constructs were provided by Dr. B. Weinstein and Dr. W. Pavan through Addgene.  

pGEX-ILK-WT was a gift from Prof. Chuanyue Wu (Univ. of Pittsburgh). Mutations of 

ILK were generated by site-directed mutagenesis using QuikChange kit (Stratagene). To 

generate RCAS constructs, full length DN-PKCα and ILK-Double Mutants (ILK-DM) 

were first cloned in-frame into entry vector pENTR1A-GFP-N2 (a generous gift from Drs. 

E. Campeau and P. Kaufman, UMass. Med. Sch.)(Campeau et al., 2009), then a Gateway 

Cloning system (Invitrogen) was used to recombine target sequences into the retroviral 

vector RCASBP-Y DV.  All constructs were verified by DNA sequencing. RCAS virus 

was prepared by transfection of a chicken fibroblast line, DF1 and concentrated by 

ultracentrifugation as described before (Chau et al., 2006). 

 

Cell culture and time-lapse experiments:  Fertilized White Leghorn eggs (Charles 

River Laboratories) were incubated in a moisturized 38°C incubator. Axon cultures were 

prepared as described previously (Kolpak et al., 2009). To prepare RCAS-virus infected 

RGC axon culture, RCAS viruses were microinjected into optic vesicles at E1.5 and then 

the embryos were returned to incubator until E6 or E7. P19 cells were differentiated into 

neuronal cells as previously described (Jones-Villeneuve et al., 1982). 
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Time-lapse experiments were performed on a Carl Zeiss Axiovert 200 microscope 

equipped with a 37°C heated stage. Time-lapse images were recorded for 30 minutes at 

1-minute intervals. To study the effect of PKC on Shh-induced growth cone collapse, 

cultures were pre-incubated with 100 nM Gö6976 (EMD Biosciences) or 50 nM PKCβ 

inhibitor (EMD Biosciences) for 30 minutes before adding vehicle or Shh (recombinant 

Shh-N, R&D system). Growth cone collapse was scored by a loss of lamellipodia and 

decrease of filopodia number to three and less per growth cone. 

 

Cell fractionation and immunoblotting: Dissected E6 retinas were incubated in media 

for 15 minutes and then treated with either vehicle or 3.0 µg/ml Shh for the time 

indicated. After washing twice with ice-cold PBS, retinal lysates were prepared in Buffer 

A (20 mM Tris-HCl, pH 7.5, 0.25 M sucrose, 2 mM EGTA, 2 mM EDTA, protease and 

phosphotase inhibitor cocktails) by first passing through a needle and then sonicating. 

The lysates were centrifuged at 100,000 g for 1 hour and the supernatant was designated 

as cytosolic fraction. The pellet was re-suspended with buffer A containing 1% TritonX-

100 on ice for 30 min. Following centrifugation as before, the supernatant was collected 

as detergent-soluble fraction. The pellet was dissolved with buffer A containing 1% SDS 

and designated as detergent-insoluble fraction. Protein concentration was determined by 

Bio-Rad detergent compatible protein assay. Equal amounts of protein were loaded onto 

SDS-PAGE gel, and a standard western blot protocol was followed. 
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Immunoprecipitation assay: Differentiated P19 cells are treated with vehicle control or 

Shh (3.0ug/ml) for 5mins. Ice-cold PBS is used to stop the reaction. Cells are lysed in 

buffer and then incubated with anti-PKCα at 4 degree overnight 

 

Protein purification and in vitro phosphorylation: E.coli strain BL21 (DE3) was used 

for expression of the glutathione S-transferase (GST) fusion proteins of ILK-WT and 

mutants. GST fusion proteins were purified by glutathione-agarose beads (Sigma) 

according to the manufacturer’s instruction. For in vitro phosphorylation assay, purified 

recombinant PKCα (0.1 µg) (Millipore) and ILK (0.4 µg) were mixed in 20 μl of the 

reaction mixture (20 mM HEPES, pH 7.4, 10 mM MgCl2, 1 mM CaCl2, 2.5 μM ATP, 

0.125 μg/ml phosphatidylserine, 200 nM PMA). After addition of 0.75 μl of [γ-32P] ATP 

(10mCi/ml) (Perkin Elmer), the reaction mixture was incubated for 30 min at 30°C. 

Samples were analyzed on SDS-PAGE and then developed by Phosphoimager. 

 

DiI labeling and immunofluorescent staining: RCAS viral stocks were microinjected 

into optic vesicles at E1.5 as described previously (Jin et al., 2003), and the embryos 

were returned to the incubator until E7. At E7, the lens and vitreous body of the right 

eyes were removed and a small amount of DiI (1 mg/ml) was injected into the optic disc 

with a fine glass micropipette. The embryos were then fixed with 4% paraformaldehyde 

at 37°C for 2 to 3 weeks. After that, the embryos were imbedded in 3% agarose and 

sectioned at 150 μm on a vibratome. Sections were mounted on coverslips and examined 

on a Nikon Eclipse E600 microscope or Leica TBS SP2 confocal microscope. 
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Immunocytochemistry staining was carried out similarly as described previously (Kolpak 

et al., 2009). Fluorescent images were acquired using a 63x objective on a Zeiss Axiovert 

200 microscope. The background staining of the antibodies was determined by omitting 

the primary antibodies. For quantification of fluorescence signals using the Image J 

software, axons were randomly chosen throughout the coverslips and images were taken 

with a fixed exposure time (below saturation and with minimal background signal) for all 

samples. Because Shh reduced growth cone area, a segmented line tracing tool was used 

to draw a line in the center of the axon in Image J to measure the fluorescence intensity 

from the tip of the growth cone to the end of the shaft in the image.  Mean fluorescent 

intensity along the line was recorded to compare the results. Because the exposure was 

set to minimize the background fluorescence level, the background signal was not 

significantly increased due to growth cone collapse, as shown in the experiment skipping 

the primary antibody.  To quantify the colocalization of GAP43 and phospho-PKCα 

(Ser657), fluorescent images of the two channels were taken using a Leica TBS SP2 

confocal microscope with fixed, unsaturated exposure settings. Quantification of 

colocalization were carried out as described previously (Jaskolski et al., 2005). 

Normalized mean deviation product (nMDP), index of correlation (Icorr), and the color 

map with cooler color representing less colocalization and hotter color representing 

stronger colocalization were generated using the Image J plugin software. Thirty paired 

images were measured in each condition. 

 

Axon turning assay, dextran internalization and calcium imaging: Dextran uptake, 

axon turning assay and data analyses were carried out similarly as in our previous study 
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(Kolpak et al., 2009).  For dextran internalization, RCAS-virus infected retinas were 

dissected at E6 or E7 and cultured overnight. The cultures were treated with 2.5 mg/ml 

10K tetramethylrhodamine dextran (Invitrogen) with 3.0 µg/ml Shh or vehicle for 2 mins 

at 37°C, washed, and then fixed in 4% paraformaldehyde.  GFP-positive axons were 

photographed and analyzed. 

 

To study the effect of PKC on Shh-induced axonal turning, RGC cultures were pre-

incubated with 5 nM Gö6976 (inhibiting PKCα) for 1 hour or 50 nM PKC β inhibitor for 

30 minutes prior to the turning assays.  For the experiments with the DN-PKCα and ILK-

DM-expressing axons, RCAS-virus infected RGC cultures were prepared as above, and 

the turning assay was performed on GFP-positive axons. 

 

For calcium imaging, RGC cultures were loaded with 5 µM Fluo-3 AM (Invitrogen) for 

30 minutes, rinsed with media prior to imaging. Imaging was initiated 20 seconds before 

the pulsing of picospritzer delivering vehicle or Shh protein, with a similar setup as used 

in the turning assay above.  Images were acquired at 1 frame/s with excitation 

wavelength at 488 nm.  In some experiments, 5 µM cyclopamine (Toronto Research 

Chemicals) was added to the media 30 minutes before application of Shh. 
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RESULTS 

As we and others previously showed (Trousse et al., 2001, Kolpak et al., 2009), minutes 

after the addition of Shh (2.5-3.0 µg/ml) into the culture media, chick RGC axons 

exhibited rapid growth cone collapse (67.0±2.3 % of total axons collapsed); a loss of 

lamellipodia and retrieval of filopodia occurred, followed by axon retraction (Fig. 2.1A).  

To explore the mechanism by which Shh induces growth cone collapse, pharmacological 

inhibitors to various signaling pathways were added prior to the addition of Shh in the 

culture, and the axonal response was recorded by time-lapse microscopy. Since several 

PKC isotypes (e.g. α, β, δ, ζ) have been shown to be expressed in RGC axons in mice and 

chick (Wu et al., 2003, Wong et al., 2004), specific inhibitors of PKC signaling were 

tested.   Some of them, e.g. a PKCδ inhibitor Rottlerin, caused rapid growth cone 

collapse and axon retraction by themselves at the recommended concentrations 

precluding their use in the study of Shh signaling (data not shown).  In contrast, Gö6976, 

a widely used inhibitor for PKCα and PKCβI at 100 nM concentration or lower, or a 

PKCβ-specific inhibitor, did not have any significant effect on RGC axons when added 

alone.  Pre-treatment of Gö6976, however, abolished the effect of Shh on RGC axons.  

Growth cones did not collapse after addition of Shh (10.8±2.7 % of growth cones 

collapsed) (Fig. 2.1B), rather remained dynamic with motile lamellipodia and filopodia, 

and no significant axon retraction was observed.  In contrast, the PKCβ-specific inhibitor 

did not block the Shh-induced growth cone collapse (67.1±12.2 % of axons collapsed) or 

axon retraction (Fig. 2.1B).  These data suggest that PKCα may play a role in the growth 

cone collapse in response to Shh. 
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Figure 2.1.  Shh-induced growth cone collapse is blocked by inhibition of PKCα.  

Time-lapse microscopy of RGC culture was initiated after addition of either vehicle or 

3.0 μg/ml Shh. For some experiments, inhibitors to conventional PKC isoforms (Gӧ6976 

or PKCβ inhibitor) were added to the cultures for 30 minutes prior to the time-lapse 

experiment.  A, Bright field images of RGC axons at 0 and 5 min after the addition of 

vehicle control or Shh.  Note that Gö6976 but not the PKCβ inhibitor abolished Shh-

induced growth cone collapse. Arrows indicate collapsed growth cones. B, Percentages of 

RGC growth cones that collapsed within 5 minutes of addition of vehicle or Shh. Growth 

cone collapse was defined as loss of lamellipodia and reduction of filopodia number to 

three or less per growth cone. Data are represented as mean±SEM. *p<0.0001, Student’s 

t test. Numbers in parentheses indicate the total number of axons scored from three 

independent experiments. 
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One of the hallmarks of activation of various PKC isoforms is the translocation of PKC 

proteins from the cytosol to specialized cellular compartments (Dempsey et al., 2000, 

Shirai and Saito, 2002, Rosse et al., 2010). To examine the effect of Shh on PKC protein 

translocation, E6 chick retinas were dissected and incubated with Shh for 5 and 15 min.  

Retinal cells were then lysed and subjected to ultracentrifugation to separate the cytosolic 

proteins from the pellets. The pellets were subsequently extracted with TritonX-100 to 

further fractionate into TritonX-100 soluble membrane fraction and insoluble fraction, 

which includes the cytoskeletons and likely TritonX-100-insoluble lipid rafts.  Equal 

amounts of total protein in these fractions were run on SDS-PAGE and blotted with 

antibodies recognizing PKC isoforms, including anti-PKCα, βI, δ, ζ or µ.  Five minutes 

of Shh treatment lead to a significant increase in the amount of PKCα in the TritonX-100 

soluble and TritonX-100 insoluble fractions (average 1.8 and 6.2 folds, respectively) (Fig. 

2.2A,B). The translocation of other PKCs was not significant except for PKCµ which 

showed ~1.6 fold increase in the TritonX-100-insoluble fraction (Fig. 2.2B). The amount 

of PKCδ was detectable in cytosolic fraction but too low to be detected in the non-

cytosolic fractions.  A corresponding decrease of each isotype in cytosolic fraction was 

not observed, possibly due to the presence of large amount of PKC protein isoforms in 

the cytosol. 

 

At E6, the newly differentiated RGCs and their elongating axons are exposed at the 

ganglion side of the retina whereas the undifferentiated cells are exposed at the 

ventricular side (Prada et al., 1991, Bao, 2008).  We were not able to purify the RGCs, 

because we could not obtain the antibody recognizing the chicken Thy-1, which is 
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required for the panning procedure for purification of RGCs.  To confirm that PKCα 

activation occurred in the RGC axons in response to Shh, we performed 

immunofluorescent staining with an antibody recognizing the phosphorylated Ser657 

PKCα, or phospho-PKC (pan) antibody that recognizes PKCα, βI, βII, δ, ε, η and θ 

isoforms when phosphorylated on residues homologous to Ser657 of PKCα.  PKCα 

Ser657 is phosphorylated in activated PKCα (Bornancin and Parker, 1997).  Anti-

phospho-PKCα Ser657 and anti-phospho-PKC (pan) staining appeared as relatively large 

puncta inside the axons. Many axons in the control samples appeared negative for the 

staining, and the most apparent effect of Shh treatment appeared to increase the number 

of axons containing the positive puncta.  The number of puncta inside the axon was also 

increased. For quantification of the results, axons were randomly chosen throughout the 

coverslips and images were taken with a fixed exposure time set to minimize background 

signal and avoid saturation. A segmented line tracing tool was used to draw a line in the 

center of the axon in Image J to measure the fluorescence intensity from the tip of the 

growth cone to the end of the shaft in the image.  Mean fluorescence intensity on the line 

was recorded to compare the results. Growth cone collapse did not significantly increase 

background fluorescence signal as shown in the experiments without the primary 

antibody (not shown).  Compared to the vehicle control, 2 min treatment of Shh 

significantly increased the level of phospho-PKCα (Ser657), or phospho-PKC (pan) in 

the RGC axons (Fig. 2.2C, D).  Because Ser657 or equivalent is the last site of the PKC 

autophosphorylation loop, phosphorylation of this site on PKCα can be inhibited by 

Gö6976 (Ginnan et al., 2004). Pretreatment of the RGC culture with Gö6976 at a low 

concentration of 5 nM, which reportedly inhibits PKCα 
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Figure 2.2.  Shh preferentially activates the PKCα isoform. A, Chick retinal explants 

were treated with 3.0 ug/ml Shh for 5 and 15 min.  Cell lysates were processed to result 

in cytosolic, Triton X-100 soluble and insoluble fractions.  Western blots were carried out 

by using antibodies specific for various PKC isoforms and loading controls were shown 

blotted with GAPDH, Na+/K+-ATPase and α-tubulin antibodies. Representative gel 

image of three independent experiments is shown. B, Quantification of translocation of 

PKC isoforms to TritonX-100 soluble and TritonX-100 insoluble fractions.  C, D, Chick 

RGC axon cultures were treated with  vehicle control, Shh alone or Shh in the presence 

of Gö6976 or PKCβ inhibitor for 2 mins. Representative immunofluorescent images of 

antibody staining specific for phospho-PKCα (Ser657) and phospho-PKC (pan) were 

shown. The fluorescent signals were quantified by ImageJ (see Methods). Numbers in 

parentheses indicate the total number of axons measured from three independent 

experiments. Data are represented as mean±SEM. *p<0.01, Student’s t test. 

 

 

 

 

 

 

 

 

 



51 
 

 

 

 

 

 

 

 

 



52 
 

only (Martiny-Baron et al., 1993), abolished the increase of phospho-PKCα (Ser657) or 

phospho-PKC (pan)  level in the RGC axons by Shh (Fig. 2.2C,D), while the PKCβ 

inhibitor did not have an effect.  The fact that we observed a similar increase in the level 

of phospho-PKCα versus phospho-PKC (pan) in response to Shh, and the increase was 

abolished by pre-incubation with Gö6976 in both cases, suggests that PKCα is the main 

PKC isoform that is activated by Shh in the RGC axon. 

 

To confirm the observation we obtained in chick RGC cells, we differentiated P19 cells, a 

pluripotent mouse embryonic carcinoma cell, into neuronal-like cells using retinoic acid 

and treated with 3.0ug/ml of Shh. As shown in Figure 2.3A and B, the neurites of the 

differentiated P19 cells showed rapid retraction within minutes of Shh application 

(65.8±2.9% Shh-treated vs 19.4±1.9% vehicle-treated), similar to what we saw on RGC 

cells, suggesting that the differentiated P19 cells were also responsive to Shh. 

Furthermore, Shh acutely translocated PKCα to TritonX-100 soluble and TritonX-100 

insoluble factions of P19 cells, and phosphorylated PKCα at Ser657 site (Figure 2.3 C 

and D). 

 

Growth-associated protein 43 (GAP-43), has been shown to be associated with the 

detergent-resistant lipid rafts in the growth cone through palmitoylation (Arni et al., 1998, 

Laux et al., 2000). To analyze if PKCα is translocated to detergent-resistant membrane 

fraction in response to Shh, possibly lipid rafts, RGC cultures were treated with Shh for 

two minutes and axons were co-stained with anti-GAP-43 and anti-phospho-PKCα 

(Ser657) antibodies. As shown in Figure 2.4A, the punctate staining patterns of GAP-43 
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Figure 2.3 Shh activates PKCα in differentiated P19 cells. A and B, P19 cells were 

differentiated into neuronal-like cells using retinoic acid and cultured on PDL/Laminin 

coated coverlips 24 hrs before experiments. After vehicle control or Shh (3.0 ug/ml) was 

added to the culture, filming started. Shh induced rapid neurite retraction (arrow). 

Representative images of at least four independent experiments are shown.  C, 

Differentiated P19 cells were treated with vehicle control or Shh (3.0 ug/ml), lysed, 

immunoprecipitated with anti-PKCα antibody and blotted with anti-phospho-pan 

antibody. Total PKCα was used as loading control. D, Translocation experiments were 

carried out similar to that in Figure 2.2A. PMA, a potent activator of PKC, was used as a 

positive control. For C and D, representative gel images of two independent experiments 

are shown. 
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and phospho-PKCα (Ser657) were observed to have a marked increase in colocalization 

after 2 min treatment of Shh.  The increase of colocalization was further confirmed by 

using a quantitative image analysis method designed for evaluation of colocalization of 

two fluorescent signals (Jaskolski et al., 2005). nMDP values (scaling between -1 to 1) 

indicate intensity correlation between the two channels with negative values representing 

non-correlated pixels and positive values representing correlated pixels. Shh significantly 

increased the number of pixels with positive nMDP values (data not shown), and 

consequently increased the mean index of correlation (Icorr) that measured the fraction of 

positive nMDP values over total nMDP values (Fig. 2.4B).  These data suggest that Shh 

signaling activates PKCα, as shown by a significant increase in phosphorylation of PKCα 

and translocation from the cytosol to the plasma membrane, possibly concentrated in 

lipid rafts. 

 

Binding of Ca2+ to the N-terminal C2 domain is required for the activation of 

conventional PKCs (Steinberg, 2008) . We therefore performed Ca2+ imaging using the 

cell-permeable Ca2+ indicator Fluo-3 AM. Shh was pulse-applied from a fine glass 

micropipette positioned at ~150 µm from the growth cone and at 45o angle to the 

direction of axon extension.  As shown in Figure 2.4C, D, Shh increased Ca2+ level in the 

growth cone seconds after the onset of Shh application. The magnitude of Ca2+ increase 

(ΔF/F) ranged from ~25% to ~50% and the duration of the increase lasted from 50 

seconds to a few minutes. 62.5% of Shh-treated growth cones showed Ca2+ increase (n=8) 

versus 10% in the vehicle treated samples (n=10). Pretreatment with cyclopamine, a 

specific inhibitor of Shh signaling pathway, reduced the number of growth cones 
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Figure 2.4. Shh increases colocalization of phospho-PKCα (Ser657) with GAP-43, 

and elevates Ca2+ in the growth cone. A-B, Shh treatment increased colocalization of 

phospho-PKCα (Ser657) with GAP-43 in the RGC growth cones.  A, RGC axons were 

treated with vehicle or Shh for 2 min and stained with antibody specific for GAP-43 or 

phospho-PKCα (Ser657). Merged confocal images of antibody staining and nMDP 

quantitative colocalization maps are shown in the 3rd and 4th columns, respectively.  In 

the nMDP colocalization maps, intensity correlation between the two channels, from less 

to stronger colocalization, is represented by cooler to hotter colors. B, Quantification of 

image correlation, Icorr, which represents the number of positive nMDP over total number 

of nMDP in a correlation image. The Icorr ranges from 0 to 1, where 0.5 represents 

randomly distributed signals. Numbers in parentheses indicate the total number of growth 

cones measured from three independent experiments. Data are represented as mean±SEM. 

*p<0.01, Student’s t test. C, Shh induces Ca2+ elevation in chick RGC growth cone. 

Fluorescent images of Fluo-3 AM loaded growth cone before and after application of Shh. 

The fluorescent intensity is represented by pseudo-color in the linear scale (blue=0, 

red=377, arbitrary units). D, Average fluorescence change of Ca2+ in the growth cone 

after application of Shh (n=5), depicted as the percentage change normalized to the 

average fluorescent intensity before the onset of Shh application (∆ F/F). Arrow indicates 

the onset of Shh pulse from the micropipette. 
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responsive to Shh (2 out of 9 showing Ca2+ increase).  These results demonstrate that Shh 

rapidly increases Ca2+ level in the RGC growth cones. 

 

We next searched for proteins that act as downstream effectors of PKCα to mediate the 

effects of Shh in RGC axon guidance.  The NetworKin algorithm predicts that PKCα may 

directly phosphorylate integrin-linked kinase (ILK) at threonine 173 (Linding et al., 

2007).  As ILK has been shown to be expressed in the neurites of hippocampal neurons, 

dorsal root ganglion and PC12 cells (Mills et al., 2003, Guo et al., 2007), we tested the 

possibility that ILK was downstream of Shh-PKCα by staining the RGC axons with an 

antibody specifically recognizing ILK that is phosphorylated at threonine 173 (ILK-

T173).  Compared to vehicle control, 2 min treatment of Shh significantly increased the 

level of phosphorylated ILK-T173 in the RGC axons; this effect was inhibited by 

pretreatment of RGC culture with Gö6976 prior to Shh (Fig.2.5B).  Some of the 

phosphorylated ILK-T173-positive puncta also appeared to colocalize with the 

phosphorylated PKCα Ser657-positive puncta in RGC axons, although many did not, 

suggesting a rather transient association (data not shown). These data suggest that Shh 

increased phosphorylation of T173 on ILK through PKCα activation. 

 

Recombinant wild type ILK protein (ILK-WT), as well as a mutant ILK protein with 

threonine 173 replaced by alanine (ILK-T173A) were produced.  In vitro kinase assay 

was carried out by incubation of purified recombinant PKCα with the ILK proteins 

without addition of any cellular extracts. As shown in Figure 2.5C, high level of 

phosphorylation was observed in ILK-WT and the phosphorylation level was decreased 
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to ~50% in ILK-T173A mutant, suggesting that PKCα can directly phosphorylate ILK on 

T173 and on an additional unidentified site.  A 3-D protein model of ILK was built by 

using Geno3D and AS2TS software and the potential ILK phosphorylation sites were 

mapped onto the 3-D model.  Sites located on the surface of the protein and in close 

proximity to the T173 were selected for mutagenesis.  Six additional sites (T172, T181, 

S186, S246, T310 and T332) were mutagenized to alanine in the ILK-T173A constructs 

to generate double mutants.  As shown in Figure 2.5D, ILK double mutant T173A/T181A 

(ILK-DM) appeared not phosphorylated by PKCα in the in vitro phosphorylation assay, 

while other double mutants exhibited phosphorylation level similar to that of single 

mutant (ILK-T173A).  Although mixed results were reported whether ILK can be auto-

phosphorylated (Hannigan et al., 1996, Acconcia et al., 2007, Wickstrom et al., 2010), 

auto-phosphorylation of ILK was not detected in our assays (Fig. 2.5C). 

 

ILK has been implicated in phosphorylating β1 integrin cytoplasmic domain at threonine 

788 and 789 (Hannigan et al., 1996, Hannigan et al., 2005), although direct evidence is 

still lacking.  Since β1 integrin has been shown to be important for chemorepulsion of 

growth cones by MAG (Hines et al., 2010), we examined whether Shh increased the 

phosphorylation of T788/T789 on β1 integrin. Both immunofluorescent staining on RGC 

axons and western blot analysis using whole retina showed that phosphorylation level of 

β1 integrin at T788/T789 appeared unaffected by Shh treatment (Fig 2.5E, F).  However, 

this does not rule out that other sites (e.g. S785) may be phosphorylated by ILK. 
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Figure 2.5.  Shh activates ILK through direct phosphorylation by PKCα. A-B, Chick 

RGC axon cultures were treated with vehicle control, Shh alone or Shh in the presence of 

Gӧ6976 for 2 mins. The immunofluorescent signals of phospho-ILK-T173 were 

quantified by ImageJ (see Methods). C, In vitro kinase reactions were carried out by 

mixing purified recombinant PKCα with wild type or a single mutant form of ILK (ILK-

T173A).  Phosphorylation of ILK was analyzed on SDS-PAGE followed by 

autoradiography. The upper band shows the autophosphorylation of PKCα (81 kDa) and 

the lower band shows the phosphorylation of ILK-GST fusion protein (≈76kDa). Without 

PKCα, auto-phosphorylation of ILK-WT was undetectable.  D, Double mutations (ILK-

T173A/T181A) but not the other double mutations further reduced ILK phosphorylation 

to the basal level. Equal loading of the gel was verified by western blot using an anti-

GST antibody. E, Chick RGC axon cultures were treated with vehicle control or Shh for 

2 mins. The immunofluorescent signals of phospho-β1-integrin-T788/T789 were 

quantified by ImageJ. F, E6 chick retinas were treated with vehicle or Shh for 5 mins, 

cell lysate were run on SDS-PAGE gel and probed with phospho-β1-integrin-T788/T789. 

Numbers in parentheses indicate the total number of axons measured from three 

independent experiments. Data are represented as mean±SEM. *p<0.001, Student’s t test. 
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We next set out to test whether PKCα and its downstream ILK play a role in Shh-induced 

axonal turning.  As in our previous report (Kolpak et al., 2009), Shh (2.5-3.0μg/ml) 

pulsed from a micropipette positioned at a 45° angle with respect to the original direction 

of axon extension caused repulsive turning of the RGC axons. The majority 

of growth cones turned away from the Shh gradients, with an average turning angle of - 

32.89° compared to the control (< 5°) (Fig. 2.6A-D).  Pre-treatment with Gö6976, but not 

the PKCβ inhibitor, abolished Shh-induced repulsive turning, yielding an average turning 

angle of 4.74° and - 26.43°, respectively (Fig. 2.6B-D).  Random turning of RGC axons 

was observed in the Gö6976-treated cultures, suggesting that inhibition of PKCα does not 

affect the ability of the axon to turn but affects their turning response to Shh. 

 

Dominant-negative PKCα (K368R) with a GFP fusion at C-terminus was also 

constructed into a replication-competent retroviral RCAS vector (RCAS-DN-PKCα). The 

K368R mutation at the ATP-binding site of the PKCα abolishes its kinase activity (Ohno 

et al., 1990).  In addition, ILK-DM (T173A/T181A) fused with GFP at the C-terminus 

was also cloned into the RCAS vector (RCAS-ILK-DM).  Retroviral stocks were 

produced and injected into optic vesicles in the chick embryos at E1.5.  RGC cultures 

were prepared from E6 or E7 retina and wide spread infection was observed (Fig. 2.9 A, 

C, E).  Axons infected with RCAS-DN-PKCα, RCAS-ILK-DM or control RCAS-GFP 

were identified by expression of GFP and selected for turning assays.  Similar repulsive 

turning was observed in the RCAS-GFP-infected axons in response to Shh, compared to 

uninfected controls (- 23.04° vs - 32.89°, respectively) (Fig. 2.6B-D).  A significant 

inhibition of Shh-induced turning was observed by expression of RCAS-DN-PKCα or 
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Figure 2.6.  Activation of PKCα and ILK is required for the repulsive axon turning 

induced by Shh.  A, Dark field images of RGC growth cones before (0 min) and after 

(10 min and 20 min) exposure to a vehicle or Shh gradient delivered by a micropipette 

positioned at 45o angle to the direction of axon growth (arrow). B, Superimposed traces 

depict the trajectory of wild type RGC axon extension in the presence or absence of PKC 

signaling pathway inhibitors in the culture media (upper row).  For some experiments, 

RGC axon cultures were derived from retinas infected with retroviruses, including 

RCAS-GFP, RCAS-DN-PKCα or RCAS-ILK-DM (lower row).  Infected axons were 

selected based on GFP fusion protein signals. The origin is the centre of the growth cone 

at the beginning of the recording and the original direction of axon extension coincides 

with the y-axis. Arrows indicate the direction of the Shh protein gradient. Tick marks on 

the x- and y-axis represent 5μm. C, Average axonal turning angles and extension under 

various experimental conditions. Data are represented as mean±SEM. *p<0.001, 

**p<0.05, Student’s t test. D, Cumulative distribution plots of axonal turning angles of 

each condition. Each point represents the turning angle of growth cone at the end of 20 

min exposure to vehicle control or Shh. The percentage represents the percentage of 

growth cone bearing turning angle ≤ the value indicated on the x axis. Positive angles 

represent axon turning toward the pipette, whereas negative angles represent axon turning 

away from the pipette. Gö, Gö6976, β inhibitor, PKCβ inhibitor. 
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RCAS-ILK-DM, with an average turning angle of -3.14° and -5.89°, respectively (Fig. 

2.6B-D).  In all cases, the rates of axon extension were not significantly affected by the 

viral infection (Fig. 2.6C). These results demonstrate that PKCα and ILK activities are 

required for Shh-induced repulsive axon turning. 

 

We previously reported that negative factor-induced macropinocytosis plays a critical 

role in growth cone collapse and repulsive axon turning elicited by these factors (Kolpak 

et al., 2009).  Shh-induced macropinocytosis preferentially occurred on the side of the 

growth cone facing the Shh protein gradient and inhibition of macropinocytosis appeared 

to block the growth cone collapse and repulsive axon turning induced by Shh (Kolpak et 

al., 2009).  To assess the role of PKCα and ILK in Shh-induced macropinocytosis, RCAS 

virus-infected RGC axon cultures were labeled with fluorescently-conjugated dextran 

together with Shh for 2 min. As shown in Figure 2.7A, dextran-labelled macropinosomes 

were predominantly present in the growth cone. The control RCAS-GFP-infected axons 

showed similar percentages of axons containing dex+ vesicles as those in the uninfected 

samples, with or without the addition of Shh (data not shown).  Samples infected with 

RCAS-DN-PKCα or RCAS-ILK-DM showed similar rates of dextran uptake in the basal 

condition without Shh, as those infected with RCAS-GFP (Fig. 2.7A’).  However, the 

RCAS-DN-PKCα and RCAS-ILK-DM infected axons showed a significant reduction in 

Shh-induced macropinocytosis compared to RCAS- GFP-infected samples (Fig. 2.7A’). 

These results demonstrate that disruption of PKCα and ILK function diminished 

macropinocytosis in RGC axons in response to Shh. 
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Figure 2.7. Expression of DN-PKCα and ILK-DM inhibited Shh-induced dextran 

uptake. A, A’, RGC axons infected with various RCAS viruses were treated with vehicle 

control or Shh for 2 mins with 10K rhodamine dextran. Representative fluorescent 

images of GFP-positive axons are shown. Arrowheads indicate dextran labeled 

macropinosomes. Percentages of dextran+ axons were quantified in the infected GFP-

positive axons and the data were normalized to control. B, B’, Growth cone collapse was 

also scored in the RCAS virus-infected RGC axons in response to 5 min treatment of 

vehicle control or Shh. Data are represented as mean±SEM. * p<0.05, ** p< 0.01, 

Student’s t test. Numbers in parentheses indicate the total number of axons scored from 

three independent experiments. Scale bars, 5µm. 
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Consistently, expression of DN-PKCα and ILK-DM significantly inhibited the Shh-

induced RGC growth cone collapse (Fig. 2.7B, B’).   Expression of DN-PKCα appeared 

to completely abolish the Shh-induced growth cone collapse, whereas expression of ILK-

DM resulted in a significant inhibition of axonal response to Shh but to a lesser extent 

than that of DN-PKCα (Fig. 2.7B’).  These observations are consistent with the notion 

that negative factor-induced macropinocytosis is closely associated with repulsive axon 

turning and growth cone collapse elicited by these factors. 

 

Finally, we analyzed the roles of PKCα and ILK in Shh-mediated RGC axonal guidance 

in vivo. It has been shown that a high levels of Shh are present at the anterior and 

posterior borders of the developing chick optic chiasm to confine the RGC axon 

projection within the borders at the chiasm (Trousse et al., 2001). In mouse, injection of 

an antibody-producing hybridoma to neutralize Shh protein at the chiasm region resulted 

in an increase of RGC axonal projections into the ipsilateral tract and contralateral optic 

nerve (Sanchez-Camacho and Bovolenta, 2008). However, the signaling pathway that 

mediates the effect of Shh on RGC pathfinding at the chiasm remains unclear.  To 

determine whether the PKCα-ILK pathway may be involved in the effect of Shh on 

guiding the RGC axon at the chiasm, optic vesicles were injected with the replication-

competent RCAS viruses expressing GFP, or the GFP fusion with the DN-PKCα or ILK-

DM at E1.5.  At E7, Dil was injected unilaterally into the right eye cups to label the RGC 

axons. In chicken, 100% of RGC axons cross at the optic chiasm to the contralateral side.  

In the control group expressing GFP, 1 out of 10 embryos showed minor projection 

abnormality. 
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Figure 2.8.  Expression of DN-PKCα and ILK-DM resulted in misguidance of chick 

RGC axons at optic chiasm. The optic vesicles of the chick embryos were injected with 

RCAS viruses and DiI was injected into the optic disc of one eye at E7. DiI was allowed 

to diffuse for 2 to 3 weeks to label the RGC axon pathway.  A, In RCAS-GFP infected 

retina, DiI-labeled RGC axon exhibit normal pathfinding at the chiasm projecting into the 

contralateral optic tract (asterisk). B-E’, Misprojection of RGC axons was found at the 

chiasm in the samples infected with RCAS-DN-PKCα (B-D) or RCAS-ILK-DM (E, E’).  

Axons were misrouted into the ipsilateral optic tract (arrowheads) and contralateral optic 

nerve (arrows). A’, B’, E’ are higher magnification views of the regions boxed in A, B, E, 

respectively.  C, D, Confocal images of two consecutive sections of a RCAS-DN-PKCα 

infected sample. Vertical dash line indicates the midline. * represents the contralateral 

optic tract. 
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A small number of errors of axon projection are known to occur during embryonic 

development which is corrected at later stages (O'Leary et al., 1983).  In the embryos 

with expression of DN-PKCα, the optic nerve appeared loose at the chiasm, and RGC 

axon misprojection at the chiasm was observed in 100% of  the injected embryos (n=10 

embryos). In 2 out of 10 embryos injected with RCAS-DN-PKCα, severe misprojection 

of RGC axons was observed at the chiasm; a large fraction of axons failed to cross the 

diencephalon midline and projected ipsilaterally, or crossed the midline but deviated into 

the contralateral optic nerve of the un-labeled eye (Fig. 2.8B, B’). Axons that did project 

to the correct contralateral optic tract appeared disorganized at the midline and some 

splayed out from the bundle (Figure. 2.8B’). In the rest of the embryos (n=8), a less 

severe phenotype was observed; small bundles of axons were observed to erroneously 

traverse into the opposite optic nerve or ipsilateral optic tract (Fig. 2.8C-D).  100% of 

embryos injected with RCAS-ILK-DM (n=10) also showed axon misprojection at the 

chiasm, similar to the less severe phenotypes in the RCAS-DN-PKCα injected samples 

(Fig. 2.8E-E’). Axons appeared disorganized, splayed out from the bundle, and 

erroneously projected to the opposite optic nerve or ipsilateral optic tract.  No obvious 

axonal growth effect was observed in the injected embryos. We previously reported that a 

low concentration of Shh acted as a positive factor in guiding the RGC axon toward the 

optic disc (Kolpak et al., 2005). We examined the RGC axon projection patterns inside 

the retina in the injected embryos. No obvious defect of intraretinal projection of RGC 

axons towards the optic disc was observed by expression of DN-PKCα or ILK-DM (Fig. 

2.9). This is consistent with the in vitro experimental results that the positive effect of 

low concentrations of Shh on RGC axons was not inhibited by pre-treatment of PKCα 
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inhibitor Gö6976 (data not shown). Therefore, PKCα-ILK pathway along with other 

signaling events in the axons specifically mediates the negative guidance effect of high 

concentration of Shh on RGC axons. 
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Figure 2.9. Intraretinal projection of RGC axons was not affected by expression of 

DN-PKCα and ILK-DM. The optic vesicles of the chick embryos were injected with 

RCAS-GFP, RCAS-DN- PKCα or RCAS-ILK-DM at E1.5.  Retinas were harvested at 

E7, flat-mounted with the ganglion side up, and wide-spread GFP expression was 

observed (A, C, E).  Immunofluorescent staining with an anti-neurofilament antibody (B, 

D, F ) showed the trajectories of RGC axons. In all cases, the projection patterns of RGC 

axon toward the optic disc appeared normal (some minor aberrance is due to the 

curvature of the retinal surface). Arrows indicate the direction to the optic disc. 
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DISCUSSION 

In this paper, by both in vitro and in vivo experiments, we demonstrate that a novel 

signaling pathway consisting of PKCα and ILK specifically mediates the negative 

guidance effects of high concentrations of Shh on RGC axons. Despite the reports of 

direct actions of Shh on growth cones of various axons, noncanonical signaling pathways 

of Shh mediating its effects in axon guidance have just begun to be elucidated.  Shh 

rapidly increased Ca2+ concentration, and activated PKCα and ILK in the growth cones of 

RGC axons.  By in vitro kinase assay, we found that PKCα directly phosphorylated ILK, 

and identified two phosphorylation sites on ILK.  Inhibition of PKCα or expression of a 

mutant form of ILK (T173A/T181A) that eliminates the phosphorylation by PKCα 

significantly inhibited the negative guidance effects of Shh, both in vitro and in vivo. 

 

Expressed in the dorsal and posterior borders of the chiasm in chick and mouse embryos, 

Shh has been implicated to play an important role in promotion of axon fasciculation and 

defining a constrained pathway for RGC axon pathfinding at the chiasm (Trousse et al., 

2001, Sanchez-Camacho and Bovolenta, 2008).  Injection of E13.5 mouse embryos with 

a hybridoma producing a Shh-blocking antibody resulted in RGC axon guidance defects 

at the chiasm; the RGC axon bundles were disorganized and expanded at the chiasm 

region (Sanchez-Camacho and Bovolenta, 2008). Although Shh could act directly onto 

the RGC axons in vitro, patterning defects in the midbrain region around the chiasm 

during retinal axon development due to neutralizing of Shh activity for a few days, could 

not be completely ruled out as a contributing factor to the aberrant axon 
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Figure 2.10. Model of PKCα- ILK signaling in RGC axon guidance. A, In chick RGC 

axons, Shh decreases [cAMP]i (Trousse et al., 2001a) and increases [Ca2+]i  leading to 

phosphorylation and translocation of PKCα to the plasma membrane. Activated PKCα 

phosphorylates ILK. The PKCα-ILK and the Rho GTPase pathways (Kolpak et al., 2009) 

are critical for Shh-induced negative axon guidance effects. B, In wild-type chick 

embryos, RGC axons that originate from optic disc cross at the optic chiasm to the 

contralateral optic tract.  B’, Expression of DN-PKCα or ILK-DM results in a portion of 

axons that fail to respond to Shh, leading to aberrant axon pathfinding at the chiasm.  PM, 

plasma membrane; V, Ventral; D, dorsal; N, nasal; T, temporal; on, optic nerve; ot, optic 

tract. 
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pathfinding at the chiasm (Sanchez-Camacho and Bovolenta, 2008).  In our experiment, 

expression of dominant negative PKCα and the double mutant of ILK (T173A/T181A) 

resulted in a defasciculation, disorganization and misprojection of RGC axons at the 

chiasm (Fig. 2.10), similar to the phenotypes reported by injection of anti-Shh antibody in 

chiasm region in mouse embryos (Sanchez-Camacho and Bovolenta, 2008).  These 

results support the previous suggestion that Shh may act directly on the RGC axons as a 

guidance factor rather than patterning the neural tube indirectly (Trousse et al., 2001, 

Sanchez-Camacho and Bovolenta, 2008).  The presence of other guidance factors such as 

Slit1 and Slit2 in the area may help confine the misprojected axons to existing axonal 

tracks including ipsilateral optic tract and the contralateral optic nerve rather than 

entering the preoptic or hypothalamic area, when the response to Shh was interfered at 

the chiasm (Marcus and Mason, 1995, Erskine et al., 2000). 

 

A novel PKC isoform, PKCδ, was shown to be essential for GLI-dependent reporter 

transcription in the canonical signaling pathway in the mouse LIGHT2 cells (Riobo et al., 

2006). However, the involvement of PKCα in Shh signaling has not been previously 

demonstrated.  Translocation experiments and immunocytochemical staining with 

antibodies specific for anti-phospho-PKCα and anti-phospho-PKC (pan) confirmed that 

PKCα was rapidly and most predominantly activated by high-concentrations of Shh.  

Inhibition of PKCα abolished the negative guidance effects of high-concentrations of Shh 

on RGC axons both in vitro and in vivo, suggesting that PKCα is specifically required in 

Shh-induced negative guidance effects.  Increasing evidence indicates that PKC signaling 

pathways play important roles in axon guidance. Thrombin and protein tyrosine 
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phosphatase μ (PTPμ)-induced growth cone collapse of rat dorsal root ganglion axons 

and chick RGC axons were shown to result from selective activation of novel PKCε and 

PKCδ, respectively (Ensslen and Brady-Kalnay, 2004); while Wnt-mediated attractive 

guidance of rat commissural axons requires atypical PKCζ (Wolf et al., 2008).  The 

distinct roles of individual PKCs may be attributed to the differences in their molecular 

structures, mechanisms that regulate their activation, and isoform-selective interacting 

proteins targeting them to specific substrates (Steinberg, 2008). 

 

Lipid rafts are implicated in signal transduction, endocytosis, membrane trafficking and 

cytoskeletal reorganization (Pike, 2009).  Colocalization of activated PKCα with GAP-43 

suggests that PKCα is translocated to lipid rafts upon Shh treatment. Shh signaling 

components, such as Patched and Smo, are reportedly enriched in lipid raft fractions 

(Karpen et al., 2001).  Phospholipase D, a substrate of PKCα that is required for Src- and 

EGF-induced macropinocytosis, also localizes to lipid rafts fraction of plasma membrane 

(Kim et al., 1999, Xu et al., 2000). Therefore, lipid rafts possibly serve as platforms 

where activated PKCα lies in close proximity to its activators and substrates to induce the 

formation of macropinosomes. 

 

Our results demonstrate that ILK can be directly phosphorylated by PKCα on T173 and 

T181 in vitro and expression of the ILK-DM significantly abolished the repulsive effects 

of Shh, suggesting a new role of ILK in axonal guidance.  Based in molecular modeling, 

phosphorylation of T173/T181 likely alters the regional surface electrostatic potential of 

ILK influencing its interaction with other proteins.  It may be interesting to note that ILK 
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is also directly phosphorylated by p21-activated kinase 1 (PAK1) (Acconcia et al., 2007), 

and PAK1 has been shown to be critical for macropinocytosis (Dharmawardhane et al., 

2000). ILK-DM is less effective than DN-PKCα in inhibition of Shh-induced negative 

axon guidance effects, suggesting that other effector(s) downstream of PKCα could 

potentially mediate the negative effects of Shh.  Although we did not observe increased 

phosphorylation of β1 integrin on threonine 788 and 789 by Shh treatment (Hannigan et 

al., 1996, Hannigan et al., 2005), we cannot rule out the possibility that other sites may be 

phosphorylated by ILK.  The exact role of ILK in Shh-mediated negative axon guidance 

is currently unclear. The effects of ILK were thought to result from the putative kinase 

activity of ILK (Guo et al., 2007). However, whether ILK possesses kinase activity has 

been challenged, especially by the recently available crystal structure of ILK (Fukuda et 

al., 2009, Wickstrom et al., 2010).  ILK may function as an adaptor coupling integrin and 

growth factor signaling through interactions with many proteins including, PINCH, 

parvin, paxillin, and ILKAP (Legate et al., 2006).  
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           Chapter III Rho and cAMP regulate opposite guidance effects of Shh 
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Abstract 

 

Rho-GTPases and cyclic nucleotides have been shown to play important roles in 

mediating axon guidance. Here, we show that high concentrations of Shh-induced growth 

cone collapse and repulsive axon turning can be blocked by C3 transferase and Y-27632, 

specific inhibitors of Rho and ROCK, respectively. Biochemical analysis showed that 

high concentrations of Shh rapidly activated Rho in the retina. Inhibition of Rho also 

blocked PMA-induced growth cone collapse, suggesting that Rho possibly functions 

downstream of PKC. On the other hand, we found that low concentrations of Shh can 

induce attractive axon turning, and antagonizing cAMP signaling inhibits the effect of 

low Shh. We suggest that the opposing effects of Shh on axon guidance are mediated 

through distinct signaling machineries. 
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Introduction 

 

Guidance molecules activate a series of intracellular events that ultimately lead to 

cytoskeleton rearrangement for axon navigation. A large body of work shows that Rho-

GTPases (Rac, Cdc42 and Rho) orchestrate actin filaments and microtubule dynamics by 

controlling their assembly, disassembly and reorganization (Raftopoulou and Hall, 2004). 

Perturbation of Rho-GTPases signaling causes marked changes in the motility and 

navigation of axons both in vitro and in vivo (Hall and Lalli, 2010). Several well-studied 

guidance factors, including semaphorins, ephrins, netrins and slits, have been shown to 

regulate Rho-GTPase activities (Bashaw and Klein, 2010). For instance, netrins increase 

Rac and Cdc42 activity, but inhibit Rho activity when they induce axon attraction (Li et 

al., 2002, Gitai et al., 2003). Slits, which normally induce growth collapse and axon 

repulsion, increase Rac and Rho but decrease Cdc42 activity (Wong et al., 2001, Fan et 

al., 2003). In general, Rho and Rac/Cdc42 function antagonistically, with the former 

associated with negative factors causing growth cone collapse and growth inhibition. 

 

One previous study suggested that Rho is likely involved in Shh-mediated neurite 

outgrowth (Kasai et al., 2004). The authors showed that over-expression of Smo in 

Neuro2A cells inhibits neurite outgrowth, but co-transfection of dominant-negative Rho 

rescued the phenotype. They also showed that activation of Rho increased the activities 

of transcription factor Gli1, and inhibition of Rho  substantially decreased the nuclear 

transport of Gli3, suggesting that Rho is an important regulator of the transcriptional 

factors in the Shh pathway (Kasai et al., 2004). However, it is unclear from these 
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experiments if the transcription regulation determines the inhibition of neurite outgrowth 

by Shh. 

 

In addition, previous studies showed that high Shh rapidly decreases the concentration of 

cyclic AMP (cAMP) within the growth cones of chick RGC axons (Trousse et al., 2001), 

whereas Sema III-induced growth cone collapse of rat DRG can be inhibited by 

activation of the cGMP pathway (Song et al., 1998), suggesting a role of cyclic 

nucleotides in negative guidance factors induced growth cone collapse. Several studies 

also showed that axon attractive turning can be converted to repulsive turning, or vice 

versa, by manipulating the activity or the relative ratio of cAMP and cGMP in axon 

(Song et al., 1998, Nishiyama et al., 2003), suggesting the importance of cyclic 

nucleotides in the bi-directional axon guidance. It seems that an increase of cyclic 

nucleotide activity (or high cAMP/cGMP ratio) favors positive guidance effects while a 

decrease of cyclic nucleotide activity (or low cAMP/cGMP ratio) favors negative 

guidance effects (Bashaw and Klein, 2010) . 

 

We previously showed that Shh acts as a positive factor to promote RGC axonal growth 

at low concentrations (~0.5ug/ml). This result prompted us to investigate if low Shh 

induces attractive turning and if cyclic nucleotides mediate the process. Since high Shh 

(~3.0ug/ml) rapidly induces growth cone collapse and axon retraction, we were also 

interested in whether Rho is involved in the negative effects of Shh. 
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Materials and Methods 

RGC axon culture 

Standard specific pathogen-free white Leghorn chick embryos were provided fertilized 

by Charles River Laboratories (North Franklin, Connecticut) and incubated in a 

moisturized 38oC incubator.  Chick retinas were harvested at embryonic day 6 (E6), 

mounted on nitrocellulose filters, cut into approximately 300 μm-wide strips and cultured 

on glass bottom dishes coated with 10 μg/ml poly-D-lysine (Sigma) and 5-10 μg/ml 

laminin (Invitrogen).  The retinal explants were cultured for 16-20 hours in F-12 media 

(Invitrogen) containing 0.4% methyl cellulose (Sigma) and penicillin/streptomycin to 

allow for axon outgrowth. 

Time-lapse video microscopy and turning assay 

Time-lapse experiments were performed on a Carl Zeiss Axiovert 200 microscope 

equipped with a 37°C heated stage. Time-lapse images were recorded for 30 minutes at 

1-minute intervals using the Zeiss Axiovision LE software. For some experiments, axon 

culture were pre-treated for 90 min with membrane permeable Rho inhibitor C3 

transferase (1.0μg/ml), or 30 mins of ROCK inhibitor Y-27632(20μM) before adding 

vehicle, Shh (recombinant Shh-N, R&D system) or PMA. Growth cone collapse was 

scored by a loss of lamellipodia and decrease of filopodia number to three and less per 

growth cone. 

 

Axon turning assay and data analyses were carried out similar to our previous study. A 

custom software was generated to control the picospritzer to apply positive pressure to 

the pipette at a frequency of 2 Hz and a pulse duration of 2 msec.  A micromanipulator 
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was used to position the pipette at ~150 µm distance from the growth cone and at an 

angle of 45o from the initial direction of axonal extension.  Time-lapse movies were 

produced to record the movement of the growth cone for 30 minutes. Vehicle control, 

0.3-0.5 µg/ml or 3.0 μg/ml of Shh protein was loaded in the capillary pipette. To study 

the effect of Rp-cAMPs (20 μM), Sp-cAMPs (20 μM) or Gö6976 (5 nM) on low 

concentration of Shh-induced axonal turning, RGC cultures were pre-incubated with each 

inhibitor for 30 minutes prior to the turning assays. 

 

For data analysis, the positions of the growth cone centers were marked throughout the 

time course of the gradient application.  Only axons that extended more than 5 µm in the 

period of 20 minutes were included in the analysis.  The turning angle αo was determined 

as the angle of the original direction of axon extension and a line connecting the positions 

of growth cones at the beginning and the end of gradient application.  The lengths of 

axon extension were calculated by subtracting the axon lengths at the beginning time 

point (L0) from the length at the end (Lt) and converted to µm based on the scale bar. 

 

Rho activation assay 

E6 chick retinas were harvested, starved for 15 to 30 minutes, and then treated with 

vehicle control, 0.5ug/ml or 3.0ug/ml Shh for 2 minutes. Retinas are washed in ice-cold 

PBS twice and lysed by repeated pipetting. Rho activity was assayed using Rho 

activation kit, according to the instructions of the manufacturer (Upstate). Briefly, the cell 

lysate was incubated with GST-tagged Rho binding domain of Rhotekin, a Rho effector 

protein that binds specifically to the GTP-bound form of Rho. Then agarose beads pellet 



87 
 

are washed, resuspended by 2X Laemmli reducing sample buffer and boil for 5 minutes. 

Equal amounts of protein were loaded onto the SDS-PAGE gel and blotted with anti-Rho. 

Total Rho was used as loading control. 
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Results 

We and others previously showed that Shh acts as a negative factor to induce growth 

cone collapse of chick RGC axons at higher concentrations (2.5-3.0 µg/ml) (Kolpak et 

al., 2005, Kolpak et al., 2009).  To analyze the signaling pathways mediating the effects 

of high concentration of Shh, we carried out a small scale screen using pharmacological 

inhibitors. RGC axon cultures were pre-incubated with inhibitors of the Rho signaling 

pathway before addition of vehicle control or high Shh (3.0µg/ml). C3 transferase, a 

specific Rho inhibitor, inhibits Rho activity by ADP-ribosylation in the effector binding 

domain of the GTPase (Sehr et al., 1998). Y-27632, a specific inhibitor of ROCK 

downstream of Rho, inhibits ROCK kinase activity by binding to its catalytic site 

(Ishizaki et al., 2000). C3 transferase or Y-27632 alone did not significantly affect the 

growth pattern of chick RGC axons (Fig. 3.1A). Pre-treatment of C3 transferase or Y-

27632, however, abolished the effect of high Shh on RGC axons. Growth cones did not 

collapse after addition of Shh, rather remained dynamic with motile lamellipodia and 

filopodia, and no significant axon retraction was observed (11.4±1.3% (C3-pretreated); 

13.9±2.4% (Y-27632 pre-treated) vs 60±4.8% (high Shh alone), p<0.01). These data 

suggest that high Shh-induced growth cone collapse requires Rho-ROCK signaling. 

 

High Shh can induce growth cone collapse within minutes; thus, we wanted to determine 

whether Shh treatment activated Rho in a similar time frame. E6 retinas were harvested, 

treated with vehicle control, low Shh(0.5μg/ml) or high Shh (3.0µg/ml) for 2 minutes and 

the activated GTP-bound Rho were pulled down by Rhotekin, a Rho effector protein that 
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Figure 3.1. Rho signaling is required for high Shh-induced axon repulsive effects. 

A, E6 RGC culture was treated with either vehicle control or Shh (3.0 μg/ml). For some 

experiments, cultures were pre-incubated with C3 transferase or Y-27632 for 90 minutes 

and 30 minutes, respectively. B, To analyze the Rho activity, cell extracts from the retinal 

tissues treated with vehicle control, low Shh (0.5 μg/ml) or high Shh (3.0 μg/ml) for 2 

min were immunoprecipitated by using RBD domain of Rhotekin and blotted by an anti-

Rho antibody. Representative gel image of three independent experiments is shown. C, 

E6 RGC culture was treated with either vehicle control or PMA. For some experiments, 

cultures were pre-incubated with C3 transferase for 90 minutes. D, Turning assay to 

determine whether Rho is required for high Shh-induced repulsive axon turning. 

Trajectories of RGC growth cone movement were traced in the presence or absence of C3 

transferase in culture media. The origin is the center of the growth cone at the beginning 

of the recording and the original direction of axon extension coincides with the y-axis. 

Tick marks on the x- and y-axis represent 5μm. E, Average axonal turning angles under 

experimental conditions in D. Data are represented as mean±SEM. * p<0.01, Student’s t 

test. 
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binds specifically to the GTP-bound form of Rho. Two minute treatment of 3.0ug/ml Shh 

significantly increased the GTP-bound Rho (Fig.3.1B). The response is consistent with a 

previous report where 5 min treatment of Shh on Hek 293 cells also markedly increased 

the Rho activity (Kasai et al., 2004). We previously reported that high Shh could not 

activate Rac (Kolpak et al., 2009), suggesting that Shh-induced growth cone collapse is 

mediated by Rho activation but not Rac. Interestingly, 0.5ug/ml Shh did not increase the 

GTP-bound Rho (Fig.3.1B), indicating that Rho activation is probably specific to high 

Shh. 

 

We next examined whether Rho is involved in high Shh-induced axon repulsive turning. 

Shh (3.0-3.5 ug/ml) was loaded into a fine capillary glass pipette, and positioned ~150 

μm away from the growth cone and 45o angle to the original direction of axon extension 

to generate a gradient. As shown in Figure 3.1 D-E, the majority of growth cones turned 

away from the micropipette within 20 min of initiation of Shh delivery through the 

micropipette. The average turning angle for the axons was -32.9o (n=19 axons) in the 

high Shh experiments, compared with 2.2° (n=24 axons) in vehicle control. However, 

pre-incubation with C3 transferase abolished the Shh-induced repulsive axon turning, 

eliciting an average turning angle of -0.9° (n=22 axons). Collectively, these data 

indicated that Rho signaling is responsible for both high Shh-induced growth cone 

collapse and repulsive turning of chick RGC axons. 

 

In chapter II, we showed that pre-incubation of PKCα inhibitor or over-expression of 

DN-PKCα in chick RGCs effectively abolished the high Shh-induced growth cone 
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collapse. We next investigated how PKC and Rho signaling interact with each other to 

mediate the negative effect of Shh. Since there is no good method to activate the PKCα 

isoform alone, PMA was used to activate both conventional and novel PKCs. Consistent 

with previous reports that PMA induced growth cone collapse/retraction in several 

neuronal cell types (Bonsall and Rehder, 1999, Zhou and Cohan, 2001), rapid growth 

cone collapse of chick RGC axons were observed minutes after addition of PMA 

(Fig.3.1C) (4.5±1.2% of vehicle controls vs 95.8±4.2% of PMA-treated, p<0.001). 

However, the effect is blocked by pre-incubation of C3 transferase in the culture 

(11.6±0.6% of growth cone collapse, p<0.001) (Fig.3.1C), suggesting that Rho may 

function downstream of PKC to mediate the negative guidance effects. 

 

By a stripe assay, we previously showed that chick RGC axons preferentially grow onto 

low Shh coated stripes compared to BSA-coated stripes, but avoid high Shh coated 

stripes (Kolpak et al., 2005). However, direct evidence of low Shh inducing attractive 

turning of chick RGC axons was not available. Turning assays were thus carried out by 

pulsing 0.3~0.5 µg/ml of Shh from the micropipette. As shown in Fig.3.2A-D, the 

majority of growth cones turned toward the micropipette within 20 min of initiation of 

Shh delivery.  The average turning angle for the axons was 18.81o (n=28 axons) in the 

low Shh experiments, compared with -0.39° (n=23 axons) in vehicle controls, suggesting 

that low Shh induces attractive axon turning. 

 

Since inhibition of PKCα activity effectively abolished high Shh-induced repulsive 

turning, we next investigated if PKCα is required for low Shh-induced attractive turning. 
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Interestingly, pre-incubation of Gö6976 at 5nM concentration, which specifically inhibits 

PKCα isoform, was ineffective to block low Shh-induced attractive turning (Fig. 3.3A-B), 

suggesting that PKCα activity is required for high Shh, but not low Shh effects on chick 

RGC axons. 

 

To investigate the signaling mechanism for low Shh-induced attractive turning, we 

focused on cAMP as one previous study showed that high Shh (2.5μg/ml) reduced the 

cAMP level in the growth cone of chick RGC (Trousse et al., 2001b), suggesting that 

cAMP could be a mediator for Shh signaling. Since cyclic nucleotides are important 

second messengers in regulating axon turning, we next investigated whether cAMP 

signaling is involved in low Shh-induced attractive turning, RGC axons were pretreated 

with cAMP antagonist Rp-cAMPS or agonist Sp-cAMPS in bath, before a low 

concentration of Shh or vehicle control was delivered from the micropipette. While Rp-

cAMPS and Sp-cAMPS did not significantly affect the growth rates of RGC axons, pre-

treatment of cAMP antagonist Rp-cAMPS abolished Shh-induced attractive turning, 

yielding an average turning angle of -1.68o (n=31 axons) (Fig. 3.2B–D). On the other 

hand, cAMP agonist Sp-cAMPS did not affect Shh-induced attractive axon turning. 

These data indicate that antagonizing cAMP signaling inhibits the effect of low Shh on 

attractive axon turning. 
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Figure 3.2.  cAMP activity is required for low Shh-induced attractive axon turning. 

A. Dark field images of RGC axons immediately before (0 min) and 10 and 20 min after 

exposure to vehicle or low concentrations of Shh delivered by a micropipette positioned 

at a 45o angle to the direction of axon growth (arrows). B. Trajectories of RGC growth 

cone movement in the presence or absence of Rp-cAMPS or Sp-cAMPS in culture media. 

The origin is the centre of the growth cone at the beginning of the recording and the 

original direction of axon extension coincides with the y-axis. Arrows indicate the 

direction of the protein gradient. Tick marks on the x- and y-axis represent 5μm. C.  

Average axonal turning angles and extension under experimental conditions in B.  D.  

Cumulative distribution plots of axonal turning angles of each condition. Each point 

represents the turning angle of a growth cone at the end of 20 min. Positive angles 

represent axon turning toward the pipette, whereas negative angles represent axon turning 

away from the pipette. 
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Figure 3.3. PKCα doesn’t mediate low Shh-induced attractive turning. A, 

Superimposed traces depict the trajectory of wild type RGC axon extension in the 

presence or absence of Gö6976 in the culture media. Arrows indicate the direction of low 

concentration of Shh gradient. B, Average axonal turning angles and extension of each 

condition. C, Cumulative distribution plots of axonal turning angles of each condition. 

Each point represents the turning angle of growth cone at the end of 20 min exposure to 

low concentration of Shh alone, or in the presence of Gö6976. The percentage represents 

the percentage of growth cone bearing turning angle ≤ the value indicated on the x axis. 

Positive angles represent axon turning toward the pipette, whereas negative angles 

represent axon turning away from the pipette. Gö, Gö6976. 
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Discussion 

In chaptor II, we reported that PKCα is required for high Shh-mediated negative effects 

on axon guidance. Here, we report that Rho signaling is also required for such events and 

Rho likely functions downstream of PKC in mediating chemorepulsion. 

 

As growth cone navigation involves a complex coordinated reorganization of the 

cytoskeleton, regulated membrane retrieval and addition, and local protein translation and 

degradation (Dent and Gertler, 2003, Lowery and Van Vactor, 2009), it is not surprising 

that more than one signaling component is activated by guidance molecules. In other 

systems, it has been shown that PKCα and Rho can either directly or indirectly influence 

the activity of each other. In vitro, Rho can directly activate purified PKCα to a greater 

degree than other PKC isoforms, and the activity of PKCα is dependent on the 

GTP/GDP-bound state of the Rho GTPases (Slater et al., 2001, Pang and Bitar, 2005). In 

vivo, PKCα can activate Rho through phosphorylation of Rho-GDP guanine nucleotide 

dissociation inhibitor (GDI) to regulate endothelial barrier function, or decrease Rho 

activity through phosphorylation of another small GTPase Rnd3 to regulate cytoskeleton 

dynamics (Mehta et al., 2001, Madigan et al., 2009). Therefore, it is possible that 

crosstalk between PKCα and Rho GTPase enables them to coordinate their activities in 

regulating the guidance effects of Shh. 

 

However, the attractive turning effect of low Shh is abolished by inhibition of cAMP but 

not PKCα, suggesting that low and high Shh utilize different signaling cascades to 

mediate attractive or repulsive effects. Indeed, Shh was shown to attract commissural 
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axons by binding to receptor Boc (Okada et al., 2006, Yam et al., 2009), but repel post-

commissural axons through receptor Hip (Bourikas et al., 2005), indicating Shh binds to 

different receptors to initiate divergent intracellular signaling. However, Boc can also 

mediate axon repulsion as it has been shown recently that Shh repels 

mouse  ipsilateral RGC axons at the optic chiasm via receptor Boc (Fabre et al., 2010). 

Right now it is unclear how Boc mediates the opposing effects of Shh. In the case of 

Netrin-induced axon guidance, Netrin attracts axons by binding to DCC receptors, but 

repels axons when receptor UNC5 is co-expressed (Hong et al., 1999). It is possible that 

the opposing guidance effects of Shh are mediated by different Boc receptors forming 

complexes with different proteins, resulting in activation of distinct downstream 

signaling cascades. 

 

cAMP signaling is known to be involved in the canonical signaling pathway of Shh 

(Epstein et al., 1996, Hammerschmidt et al., 1996, Trousse et al., 2001).  In chick RGC 

axons, high Shh was shown to rapidly decrease the concentration of cAMP in the growth 

cone (Trousse et al., 2001).  In this study, we found that the effect of low Shh on 

attractive axon turning requires cAMP signaling. Pre-treatment with a cAMP antagonist 

abolished low Shh-elicited attractive axon turning. Cyclic nucleotides have been shown 

to play important roles in modulation of the response of axons to guidance factors, 

although the underlying mechanisms are not completely understood.  A decrease of 

cyclic nucleotide signaling has been associated with converting positive guidance factor-

induced attraction to repulsion, whereas an increase of cyclic nucleotide signaling 

converts negative factor-induced repulsion to attraction. However, in our case, when 
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cAMP was inhibited by an antagonist, we didn’t observe the conversion from attraction 

to repulsion by low Shh, rather axons appeared to turn randomly. It has been shown that 

axons cultured on different extracellular matrix protein-coated surfaces can respond 

differently to the same guidance cue. Xenopus retinal axons turn towards Netrin-1 when 

cultured on fibronectin but turn away from Netrin-1 when cultured on laminin, and 

laminin decreases cAMP level within the growth cone (Hopker et al., 1999). Our chick 

RGC axons need to be cultured on laminin-coated coverslip. Right now it is unclear why 

no such turning conversion occurs. It is possible that additional extrinsic or intrinsic 

factors may modulate the responsiveness of axons to the decreased cAMP in combination 

of low Shh. Further experiments such as gradually decreasing the concentration of 

laminin on the coverslip, or examining whether activation of cAMP converts high-Shh 

induced repulsion to attraction may help explain the results. 

 

Inhibition of PKCα abolished high Shh-induced repulsive turning but not low Shh-

induced attractive turning. This means that PKCα activity is specific to high Shh 

signaling. As previously suggested, a guidance cue executes opposing guidance effects 

via regulation at multiple levels, including receptors at the cell surface (single receptor vs 

multiple receptors), the magnitude of calcium elevation (local verse global), the ratio of 

cyclic nucleotide (cAMP vs cGMP) and the differential activation of Rho-GTPase 

members (Cdc42, Rac and Rho). Much work needs to be done to dissect the divergence 

of Shh signaling. One immediate question to be addressed is the identity of the receptors 

that are responsible for the opposing guidance effects of Shh, which would shed light on 

the downstream signaling events. 
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Chapter IV: Discussion and Perspectives 

 

In summary, we present evidence in this dissertation that Shh acts through novel 

noncanonical signaling pathways to direct RGC axon guidance. The negative guidance 

effects of Shh are mainly mediated by PKCα, Rho and ILK, whereas the positive 

guidance effect of Shh involves cAMP. Though a member of PKC (PKCδ) and Rho have 

been shown to play roles in Shh canonical signaling pathway (Kasai et al., 2004, Riobo et 

al., 2006), we show PKCα and Rho are important components of a novel Shh non-

canonical pathway mediating axon guidance. In vitro, high concentrations of Shh elevates 

growth cone Ca2+ concentration within seconds, and activates PKCα and Rho within 

minutes, as assessed by acute increase of GTP-bound Rho and 

translocation/phosphorylation of PKCα. Consistently, pharmacological inhibition and/or 

dominant-negative suppression of either protein abolished the negative effects of high 

Shh. We further found ILK is an immediate downstream effecter of PKCα and identified 

two new PKCα phosphorylation sites on ILK. ILK mutant also lessened the negative 

effects of Shh, but not as effectively as PKCα inhibition. These results indicate that Shh 

acts directly on the RGC axons in a rapid manner, independent of transcriptional 

regulation of Shh. The view is supported by previous observations that Shh-induced 

turning of commissural axons is independent of both transcriptional and translational 

repression (Yam et al., 2009). In vivo, expression of dominant negative PKCα or ILK 

mutant caused misprojection of RGC axons at the chiasm. Our data support the notion 

that spatial-temporal regulation of Shh at the chiasm restricts RGC axon within the optic 
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bundles, and we provide the first insight into the signaling mechanism mediating this 

process. 

 

Many previous studies focused on the roles of actin and microtubules in axon guidance. 

Indeed, the two major cytoskeleton elements within the growth cone undergo dynamic 

reorganization in response to guidance cues and can easily be envisioned as the major 

driving force for axon steering. The fundamental roles of Rho-GTPases in regulating 

cytoskeletal reorganization have begun to be established, but a general role of PKC in 

such events is still missing. This could be due to the fact that the numbers of PKC 

isoforms are large. Though each member shares a high degree of homology with the 

others, it seems that the non-homologous region renders a unique specificity to each 

isoform. For example, despite a 94% protein sequence similarity (highest in PKC family), 

PKCβ1 and PKCβ2 differ in their expression profiles (Chalfant et al., 1995), subcellular 

localizations at the resting state (Disatnik et al., 1994, Ron et al., 1995), translocations at 

the activated state (Goodnight et al., 1995, Blobe et al., 1996), and binding partners 

(Steinberg, 2008). Therefore, members of PKCs may function in highly specialized 

manners with only minor sequence differences. We show that within the PKC family, 

PKCα activity is specifically required for the negative effects of high Shh. Other studies 

also indicate a PKC isoform-specific mechanism underlying the guidance effects of 

different factors. For example, thrombin-induced growth cone collapse of DRG was 

shown to result from selective activation of PKCε (Mikule et al., 2003); PTPμ-induced 

growth cone collapse of chick RGC axon requires PKCδ (Ensslen and Brady-Kalnay, 

2004). Wnt-mediated attractive guidance of commissural axons requires an atypical 
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PKCζ (Wolf et al., 2008).  Taken together, present data suggest that PKC isotypes exhibit 

specificity in response to different stimuli. 

 

Rho-GTPases (primarily Cdc42, Rac and Rho) are well-studied regulators of actin 

dynamics in non-neuronal cells (Burridge and Wennerberg, 2004). Increasing evidence 

shows that they regulate actin reorganization in the growth cones (Hall and Lalli, 2010). 

Activated Cdc42 binds to members of WASP (Wiskott-Aldrich Syndrome Protein) 

family proteins which in turn activate Arp2/3(actin-related protein 2/3), proteins that 

serve as nucleation sites for new actin filaments, to stimulate actin assembly (Rohatgi et 

al., 1999). Pak kinase, serving as a common effecter of both Rac and Cdc42, activates 

LIM kinase but inhibits MLCK (myosin light chain kinase) (Manser et al., 1994, Edwards 

et al., 1999, Sanders et al., 1999). This pathway is believed to control actin filament 

turnover and retrograde flow to steer the growth cone (Lin et al., 1996). Rho can directly 

bind to downstream ROCK which subsequently phosphorylates MLC and myosin light 

chain phosphatase, both of which lead to contraction of actomyosin network (Amano et 

al., 1996, Kimura et al., 1996, Hirose et al., 1998, Wahl et al., 2000). Though much 

progress has been made to elucidate the roles of Rho-GTPases in growth cone motility, 

many questions remain unanswered. For instance, inhibition of Rho signaling blocks the 

negative effect of a list of guidance cues including Ephrin-A5 (Wahl et al., 2000), 

Semaphorin (Liu and Strittmatter, 2001), Neogenin (Conrad et al., 2007), LPA (Jalink et 

al., 1994) and Shh; it remains to be determined how a single protein Rho interprets 

different signaling inputs in a similar manner. Furthermore, the mechanism of signaling 

crosstalk between PKC and Rho-GTPases in regulating axon guidance is also unclear. 
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One study showed that inhibition of conventional PKCs by specific inhibitors reduced 

ryanodine-induced activation of Cdc42 and inhibition of Rho. Accordingly, the inhibitors 

also abolished ryanodine-induced attractive growth cone turning (Jin et al., 2005), 

suggesting that PKCs may function upstream of Rho-GTPases in such process. Studies 

carried out in other systems also indicated that PKC and Rho-GTPases can interact 

directly or through mediators between them (Mehta et al., 2001, Slater et al., 2001, Pang 

and Bitar, 2005, Madigan et al., 2009). For our study, one question to be addressed is 

whether PKCα interacts with Rho directly or indirectly to mediate the negative guidance 

effects of Shh. 

 

In addition to Rho, we also identified ILK as an immediate downstream effecter of PKCα 

in the Shh signaling cascade. There is a general consensus that ILK functions as an 

adaptor protein linking extracellular signaling to the regulation of actin cytoskeleton. ILK 

contains three major domains featuring multiple protein binding sites. In addition to 

integrin β1 and β3, the C-terminus of putative kinase domain of ILK binds  paxillin, Mig-

2 and parvins (α/β/γ) directly, and interacts with a number of actin-binding proteins such 

as α-actinin and TESK1 through parvins (Hannigan et al., 2005). These binding partners 

play important roles in anchoring the actin cytoskeleton to cell adhesion sites where ILK 

accumulates with integrin cytoplamic tails. Additionally, increasing evidence shows 

crosstalk between ILK and Rho-GTPases signaling. ILK can activate Rac1/Cdc42 or Rho 

in cell-type specific manner. Over-expression of ILK, β-parvin or αPIX leads to 

activation of Rac/Cdc42 and significant actin reorganization in several cell lines 

(Mishima et al., 2004, Filipenko et al., 2005), whereas elevated Rho signaling and 
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corresponding cell morphology change were observed in some other cells in which ILK 

or α-parvin is depleted (Montanez et al., 2009). These studies collectively show that ILK, 

acting as an adaptor protein, regulates actin cytoskeleton through its binding partners 

and/or interaction with Rho-GTPases. 

 

Ca2+ signaling also has varied effects on growth cone turning. Previous studies carried 

out on Xenopus spinal neurons showed that guidance cues applied from a point source 

can elevate growth cone Ca2+ concentration facing the cues and the preferentially 

elevated Ca2+ seems to be maintained during the entire turning process (Hong et al., 2000, 

Henley et al., 2004). Here, we showed that high Shh applied from a point source induces 

both repulsive turning and Ca2+ elevation in the chick RGC growth cone. However, in 

most cases, the Ca2+ elevation in response to high Shh was not observed in the growth 

cones facing the Shh source, rather the elevation spans the entire growth cone. In a few 

cases, we observed that the Ca2+ elevation first occurred in the growth cone proximal to 

the Shh source, and then quickly spread to the distal growth cone within 10 to 20 seconds. 

Furthermore, the Ca2+ elevation in response to Shh lasts from 50 seconds to a few 

minutes, and seemingly does not accompany the entire turning process observed in the 

turning assay. In contrast to Xenopus spinal neurons, chick RGC axons are more sensitive 

to the fluctuations in the environment (dish movement, transient change of temperature 

and CO2, exchange of the medium, etc). Before Ca2+ imaging, a required additional step 

to wash out the extracellular Ca2+ indicator Fluo-3 rendered chick RGC axons stationary. 

Therefore, it is possible that the preferential elevation of Ca2+ and its maintenance in 

response of Shh can only be observed in the growing axons which can subsequently turn. 
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Technical improvements may help resolve the issue. It is also possible that the transient 

elevation of Ca2+ beginning from one side of the growth cone is sufficient to initiate local 

downstream signaling machinery. It has been shown that stimuli-triggered repetitive Ca2+ 

spikes (with each spike only spanning a few seconds) can induce synchronous 

translocation of PKCs between the plasma membrane and cytosol , suggesting that 

transient Ca2+ elevation can activate PKC in a rapid manner (Oancea and Meyer, 1998, 

Mogami et al., 2003). It will be interesting to see whether high Shh induces translocation 

of PKCα to the side of the growth cone facing the Shh source. 

 

Moreover, it has been suggested that modest elevation of Ca2+ induces growth cone 

attraction, whereas small and large elevation results in growth cone repulsion/collapse 

(Gomez and Zheng, 2006). In our experiments, the magnitude of Ca2+ elevation in 

response to high Shh ranges from 25% to 50% compared to the baseline. As different 

groups use different Ca2+ indicators (BAPTA-1-dextran, fura-2, Fluo-3 and Fluo-4) and 

the binding affinity of these indicators with Ca2+ varies, it is impractical to compare high 

Shh-induced Ca2+ elevation with those in other studies. Since low Shh induces attractive 

turning of chick RGC axons, examining the magnitude of Ca2+ elevation by low Shh 

would provide a comparable reference for our system. 

 

Though much previous research focused on the roles of cytoskeleton in axon guidance, 

recent studies carried out in our lab and others have suggested an alternative, membrane 

trafficking-based mechanism underlying growth cone navigation. Asymmetric clathrin-

mediated endocytosis contributes to the repulsive growth cone turning caused by 
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Sema3A and MAG, with more endocytosis events observed in growth cone facing the 

guidance factors (Tojima et al., 2010). Similarly, high Shh preferentially induced more 

macropinosome formation at the side of growth cone facing the Shh gradients (Kolpak et 

al., 2009).  Inhibition of both types of endocytosis by specific inhibitors or dominant 

negative approaches abolishes the repulsive turning in response to these guidance factors. 

Therefore, asymmetric removal of the growth cone surface area may contribute to the 

repulsive turning. On the other hand, inhibition of VAMP2-mediated exocytosis prevents 

growth cone attraction but not repulsion (Tojima et al., 2007), and stimulation of 

asymmetric exocytosis by directional application of α-latrotoxin induces attractive 

growth cone turning toward the side with more exocytosis (Tojima et al., 2010), 

suggesting that exocytosis may be responsible for  growth cone attraction.  Taken 

together, growth cone navigation may require cooperative regulation at both cytoskeleton 

level and membrane level. Indeed, the formation of macropinosomes has been shown to 

be initiated by transient actin redistribution around the membrane ruffles which 

subsequently fold and fuse to form macropinosomes (Jones, 2007). Disassembly of actin 

filaments by cytochalasin D or latrunculin, or inhibition of F-actin dynamics by 

jasplakinolide, significantly reduced Shh-induced macropinocytosis in RGC axons and 

adenovirus-triggered macropinocytosis in epithelial cells (Meier et al., 2002, Kolpak et 

al., 2009) 

 

We found that inhibition of PKCα and ILK significantly reduced high Shh-induced 

macropinocytosis. Accordingly, inhibition of these proteins effectively antagonizes the 

growth cone collapse and repulsive turning caused by high Shh, suggesting that 
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macropinosome-mediated membrane removal is associated with the negative effects of 

Shh. Because of their relatively large sizes, macropinocytosis can be considered as an 

efficient measure to decrease the surface area of the growth cone. Previous studies have 

shown the importance of PKC isoforms in regulating macropinocytosis but the exact 

mechanism and consequence are not completely understood. PMA, an activator of 

conventional and novel PKCs, can induce membrane ruffling and macropinocytosis in 

A431 cells (Grimmer et al., 2002). Receptor-independent macropinocytosis of cholesterol 

LDL in macrophages seems to require PKCβ and PKCδ (Ma et al., 2006). Furthermore, 

adenovirus-triggered macropinocytosis in epithelial cells (Meier et al., 2002) and 

constitutive macropinocytosis in dendritic cells (Sarkar et al., 2005) have been found to 

be mediated by conventional PKC and novel PKC, respectively. These studies indicate 

that different members of PKC family proteins may regulate macropinocytosis in 

different cellular contexts and possibly through distinct downstream events. Stimulation 

of macropinocytosis also depends on other signaling components, including Rho-

GTPases, p21-activated kinase, Src tyrosine kinase and PI3-kinase (Swanson, 2008). In 

general, the activation of these components triggers signaling cascades that ultimately 

lead to the actin-driven ruffles that are required for formation of macropinocytosis, and 

cause local membrane curvature required for the closure of the ruffles (Swanson, 2008). 

The finding that the ILK-mutant can reduce high Shh-induced macropinocytosis is not 

unexpected. Given the fact that ILK regulates actin dynamics through a group of actin-

associated binding partners, it is possible ILK play roles in the ruffle formation process, 

but the exact mechanism is open to future research. 
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During development, RGC axons pathfinding from eye to brain provide an easily-

accessible system to study growth cone behavior in response to guidance cues presented 

in the environment. Previous studies have identified that several well-conserved families 

of guidance cues such as Slits, Ephrins and Semaphorins are expressed at the chiasm 

region and play important roles in determining RGC axon navigations at that place. 

Though not conclusive, these chiasmatic guidance factors seem to exhibit minimal 

functional redundancy at this region. EphrinB2 is mainly required to repel ipsilateral 

turning axons originated from ventral-temporal (VT) RGC and has no effect on 

contralaterally projecting axons from non-VT RGC (Nakagawa et al., 2000, Williams et 

al., 2003). The repulsive effect of Slits1/2 were found to limit the escape of axons from 

their normal path and seemingly does not affect RGC axon divergence at the chiasm 

(Erskine et al., 2000, Plump et al., 2002). Semaphorin3D also functions negatively on 

RGC axons, likely to “push” away the axons after they cross the midline (Sakai and 

Halloran, 2006). It should be noted that, due to the fact that RGC axons of fish and chick 

only project contralaterally, the mechanism by which chiasmatic guidance cues mediate 

ipsilateral axon turning in higher vertebrate species does not take place in lower 

vertebrate species. Consistently, EphrinB2 is not detected at the chiasm of fish and chick 

(Nakagawa et al., 2000). Therefore, it is possible that guidance factors in the chiasm of 

lower vertebrate species may function in a simpler manner, providing a “corridor” for all 

contralateral projecting axons. Interestingly, the development and architecture of the 

chiasm of different species shows marked variation, thus potentially influencing the 

function of the chiasm as an axon guidance source (Jeffery and Erskine, 2005). 
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The spatial-temporal regulation of Shh expression at the chiasm indeed points to the 

“corridor” mechanism and provides a system to test the hypothesis. The reaching of RGC 

axons to the midline is accompanied by a loss of expression of Shh at the chiasm, but 

retaining expression of Shh bordering the anterior and posterior edges of the chiasm 

(Trousse et al., 2001). Over-expression of Shh at the chiasm reduced RGC axons 

reaching the region (Trousse et al., 2001), while blocking Shh by a neutralizing antibody 

broadened the axon bundle at the chiasm and increased axon misprojection (Sanchez-

Camacho and Bovolenta, 2008). In this thesis, we provide the first evidence that PKCα 

and ILK play important roles in axon pathfinding at the chiasm. Inhibition of the 

signaling renders chick RGC axons insensitive to the chiasmatic Shh such that axons 

splay out from the bundle and project erroneously. 

 

Though our works uncover a new signaling cascade for the Shh-induced axon guidance, 

many questions remain unanswered. Different receptor complexes presented at the cell 

surface have been shown to regulate the opposing effects of the same guidance cue. It is 

unclear at present what receptors are responsible for the concentration-dependent effects 

of Shh. Since Shh’s receptor Boc has been shown to be responsible for both attractive and 

repulsive effects of Shh (but in different cell types), knocking-down Boc expression in 

RGC cells, and examining how RGC axons respond to low or high concentrations of Shh 

would provide information of the function of Boc receptor: is Boc only required for low 

Shh effect or is it only required for high Shh effect? It is also feasible to treat RGC axons 

culture with low or high concentrations of Shh, pull-down Boc with anti-Boc antibody, 

and examine whether Boc form different protein complexes in response to different 
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concentration of Shh by Mass Spectrometry. This method can be particularly useful to 

investigate the binding partners of another Shh receptor, Hip, as Hip has been shown to 

regulate the negative effect of Shh in postcommissural axons but Hip itself lacks 

intracellular domains. Potentially, knocking-down a single receptor of Shh in RGC may 

not enough to clarify the function of this receptor. Simultaneous down-regulating several 

receptor candidates of Shh are probably required to examine the concentration-dependent 

effects of Shh. 

 

Endocytosis/exocytosis-mediated membrane removal/addition has begun to be uncovered 

as important measures for growth cone steering. However, it is unclear where the Shh-

induced macropinosomes form, on the apical surface of the growth cone to remove bulk 

membrane, or on the substrate-facing surface to “lift” cell adhesion sites? TIRF 

microscopy can be used in future to answer this question. Furthermore, the fate of these 

vesicles remains elusive. It is possible that the roles of these vesicles are to remove bulk 

membrane from one side of the growth cone to the other side to implement turning.  

Long-term tracing of these vesicles using bleaching-resistant fluorescent dye would help 

answer the question. 

 

Though inhibition of PKCα and ILK markedly abolished Shh-induced macropinocytosis, 

the colocalization of PKCα and ILK with macropinosomes isn’t significant, suggesting 

that either the association is transient, or that PKCα and ILK regulate macropinocytosis 

indirectly. Another future aim is to study the mechanism by which PKCα and ILK 

facilitate the formation of macropinosomes. As PKC family proteins and ILK have been 
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shown to regulate actin dynamics indirectly (Brandt et al., 2002), and the formation of 

macropinosomes requires actin rearrangement around the endocytic cup, characterizing 

the mediator between PKC-ILK signaling and actin would provide insight into the 

mechanism of macropinosome formation. Several PKC substrates, such as MARCKS, 

GAP43, adductin, fascin and etc, can be served for future study as they directly 

associated with the actin (Larsson, 2005). 

 

Multiple intracellular signaling components are required for Shh-induced axon steering. 

In terms of Shh-induced attractive axon turning, Src-family kinases have been shown to 

mediate attractive turning of commissural axons, whereas we show that cAMP is required 

for the attractive turning of RGC axons. Do the two signaling systems interact with each 

other, or do they act cell-type specifically?  Addressing these unsolved issues would 

ultimately aid in our understanding of the mechanism governing Shh-induced axon 

guidance. 
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