216 research outputs found

    Titanium alloys (AoN) and their involvement in osseointegration.

    Get PDF
    Background: Osseointegration is essential for a long-term successful and inflammation-free dental implant. Such a result depends on osteoblastic cells growth and differentiation at the tissue-implant interface. The aim of this study was to compare two different AoN titanium layers (GR4 and GR5) to investigate which one had a greater osteoconductive power using human osteoblasts (HOb) culture at two different time-points. Materials and Methods: The expression levels of some bone-related (ALPL, COL1A1, COL3A1, SPP1, RUNX2, and SPARC) were analyzed using real time reverse transcription-polymerase chain reaction (real time RT-PCR). Results: Real-time RT-PCR data showed that after 3 days of treatment with TiA4GR, the genes up-regulated were COL3A1, ALPL, SPP1, and RUNX2. Moreover, no difference in gene expression was noticed 4 days later. On the other hand, the genes that overexpressed after 3 days of treatment with AoN5GR were ALPL, SPP1, and RUNX2. In both cases, the expression of COL1A1 and SPARC was negatively regulated. Conclusion: Our data showed that both titanium surfaces led to osteoblasts recruitment, maturation, and differentiation, thus promoting osseointegration at the tissue-implant interface

    Fibroblast behavior after titanium surfaces exposure.

    Get PDF
    Background: The main requirements for a good material are its ability to promote attraction and adhesion of bone precursor cells and their proliferation and differentiation. Different biocompatible materials are currently employed as scaffold. Among these, titanium is considered a gold standard because of its biocompatibility and good corrosion resistance. Materials and Methods: The aim of this work was to compare two different AoN titanium layers (GR4 and GR5) to investigate which one had a greater osteoconductive power using human fibroblasts (HFb) culture at two different time-points. The expression levels of some adhesion and traction-resistance related genes (COL11A1, COL2A1, COL9A1, DSP, ELN, HAS1, and TFRC) were analyzed using real time reverse transcription-polymerase chain reaction. Results: After 7 days of treatment with TiA 4GR, the only two up-regulated genes were COL2A1 and DSP. After 15 days of treatment, none of genes over expressed. Conclusion: Our preliminary results suggest that neither AoN 4GR nor AoN 5GR are able to promote the production of protein involved in cell\u2013cell and cell\u2013matrix adhesion and in stress-resistance, required for a good outcome in dental implantolog

    Randomised study for the 1-year crestal bone maintenance around modified diameter implants with different loading protocols: a radiographic evaluation.

    Get PDF
    This study evaluated by standardised digitised periapical radiography the crestal bone maintenance around modified diameter internal hex implants with variable thread design and narrow neck loaded with different procedures. Forty implants were placed in 25 patients. Twenty implants were conventionally loaded, 20 ones immediately loaded. Radiographs were taken with a customised bite record and processed with software. Measurements of bone from the fixture–abutment junction to mesial and distal marginal bone levels were made. Student’s t test statistical analysis was adopted. Baseline data were variable; at 1-year follow-up, there were no significant differences for marginal bone loss between immediately and conventionally loaded maxillary implants (p=0.1031), whilst there were slight significant differences between immediately and conventionally loaded implants in the mandible (p=0.0141). Crestal bone maintenance around conventionally and immediately loaded modified diameter implants was similar, with slight significant differences in mandible where a lower marginal bone loss was observed

    Anoxygenic photosynthesis and dark carbon metabolism under micro-oxic conditions in the purple sulfur bacterium "Thiodictyon syntrophicum" nov. strain Cad16T

    Get PDF
    The microbial ecosystem of the meromictic Lake Cadagno (Ticino, Swiss Alps) has been studied intensively to understand metabolic functions driven by the highly abundant anoxygenic phototrophic sulfur bacteria of the families Chromatiaceae and Chlorobiaceae. It was found that the sequenced isolate "Thiodictyon syntrophicum" nov. sp. str. Cad16T, belonging to the Chromatiaceae, may fix 26% of all bulk inorganic carbon in the chemocline at day and night. With this study, we elucidated the mode of dark carbon fixation of str. Cad16T with a combination of long-term monitoring of key physicochemical parameters with CTD, 14C-incorporation experiments and quantitative proteomics of in situ dialysis bag incubations of pure cultures. Regular vertical CTD profiling during the study period in summer 2017 revealed that the chemocline sank from 12 to 14 m which was accompanied by a bloom of cyanobacteria and the subsequent oxygenation of the deeper water column. Sampling was performed both day and night in September. While CO2 assimilation rates were higher during the light period, the relative change in the proteome (663 quantified proteins) was only 1% of all CDS encoded in str. Cad16T. Oxidative respiration was thereby upregulated at light, whereas stress-related mechanisms prevailed during the night. These results indicate that the low light availability due to high cell concentrations and the oxygenation of the chemocline induced a mixotrophic growth in str. Cad16T. The complete proteome data have been deposited to the ProteomeXchange with identifier PXD010641

    Mixotrophic growth under micro-oxic conditions in the purple sulfur bacterium "Thiodictyon syntrophicum"

    Get PDF
    The microbial ecosystem of the meromictic Lake Cadagno (Ticino, Swiss Alps) has been studied intensively in order to understand structure and functioning of the anoxygenic phototrophic sulfur bacteria community living in the chemocline. It has been found that the purple sulfur bacterium “Thiodictyon syntrophicum” strain Cad16T, belonging to the Chromatiaceae, fixes around 26% of all bulk inorganic carbon in the chemocline, both during day and night. With this study, we elucidated for the first time the mode of carbon fixation of str. Cad16T under micro-oxic conditions with a combination of long-term monitoring of key physicochemical parameters with CTD, 14C-incorporation experiments and quantitative proteomics using in-situ dialysis bag incubations of str. Cad16T cultures. Regular vertical CTD profiling during the study period in summer 2017 revealed that the chemocline sank from 12 to 14 m which was accompanied by a bloom of cyanobacteria and the subsequent oxygenation of the deeper water column. Sampling was performed both day and night. CO2 assimilation rates were higher during the light period compared to those in the dark, both in the chemocline population and in the incubated cultures. The relative change in the proteome between day and night (663 quantified proteins) comprised only 1% of all proteins encoded in str. Cad16T. Oxidative respiration pathways were upregulated at light, whereas stress-related mechanisms prevailed during the night. These results indicate that low light availability and the co-occurring oxygenation of the chemocline induced mixotrophic growth in str. Cad16T. Our study thereby helps to further understand the consequences micro-oxic conditions for phototrophic sulfur oxidizing bacteria. The complete proteome data have been deposited to the ProteomeXchange database with identifier PXD010641

    Complete genome sequence of “Thiodictyon syntrophicum” sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno

    Get PDF
    "Thiodictyon syntrophicum" sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno

    Complete genome sequence of “Thiodictyon syntrophicum” sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno

    Get PDF
    "Thiodictyon syntrophicum" sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno

    Complete genome sequence of “Thiodictyon syntrophicum” sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno

    Get PDF
    "Thiodictyon syntrophicum" sp. nov. strain Cad16T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria. The type strain Cad16T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno

    LH supplementation of ovarian stimulation protocols influences follicular fluid steroid composition contributing to the improvement of ovarian response in poor responder women.

    Get PDF
    Abstract In this prospective study, we evaluated the steroid levels in 111 follicular fluids (FF) collected from 13 women stimulated with FSH monotherapy and 205 FF collected from 28 women stimulated with FSH + LH because of a previous history of hypo-responsiveness to FSH. Steroid levels were measured by HPLC/MS–MS and related to ovarian stimulation protocol, oocyte maturity, fertilization and quality of blastocysts, after individually tracking the fate of all retrieved oocytes. 17-Hydroxy-Progesterone, Androstenedione, Estradiol and Estrone were significantly higher in the FSH + LH protocol. Progesterone, 17-Hydroxy-Progesterone and Estradiol were more expressed in FF yielding a mature oocyte (p < 0.01) in the FSH + LH protocol. FF Progesterone concentration was correlated with the rate of normal fertilization in the FSH protocol. None of the FF steroids measured were associated with blastocyst quality and achievement of pregnancy. Our results indicate that LH supplementation in hypo-responsive women modifies ovarian steroid production, mimicking physiological production better and likely contributing to an improved ovarian response. Employing a correct methodological procedure to evaluate the relationship between FF steroid hormones and assisted reproduction outcomes, our study reveals that some steroids in single follicles may be helpful in predicting oocyte maturity and fertilization
    corecore