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Estrogen exerts neuroprotective effects and reduces �-amy-
loid accumulation in models of Alzheimer’s disease (AD). A few
years ago, a new neuroprotective gene, i.e. seladin-1 (for se-
lective AD indicator-1), was identified and found to be down-
regulated in AD vulnerable brain regions. Seladin-1 inhibits
the activation of caspase-3, a key modulator of apoptosis. In
addition, it has been demonstrated that the seladin-1 gene
encodes 3�-hydroxysterol �24-reductase, which catalyzes the
synthesis of cholesterol from desmosterol. We have demon-
strated previously that in fetal neuroepithelial cells, 17�-es-
tradiol (17�E2), raloxifene, and tamoxifen exert neuroprotec-
tive effects and increase the expression of seladin-1. The aim
of the present study was to elucidate whether seladin-1 is
directly involved in estrogen-mediated neuroprotection.
Using the small interfering RNA methodology, significantly
reduced levels of seladin-1 mRNA and protein were ob-

tained in fetal neuroepithelial cells. Seladin-1 silencing de-
termined the loss of the protective effect of 17�E2 against
�-amyloid and oxidative stress toxicity and caspase-3 acti-
vation. A computer-assisted analysis revealed the presence
of half-palindromic estrogen responsive elements upstream
from the coding region of the seladin-1 gene. A 1490-bp re-
gion was cloned in a luciferase reporter vector, which was
transiently cotransfected with the estrogen receptor � in
Chinese hamster ovarian cells. The exposure to 17�E2,
raloxifene, tamoxifen, and the soy isoflavones genistein and
zearalenone increased luciferase activity, thus suggesting a
functional role for the half-estrogen responsive elements of
the seladin-1 gene. Our data provide for the first time a
direct demonstration that seladin-1 may be considered a
fundamental mediator of the neuroprotective effects of
estrogen. (Endocrinology 149: 4256–4266, 2008)

EXPERIMENTAL EVIDENCE strongly supports a neu-
rotrophic and neuroprotective role of estrogen both in

vitro and in vivo (1–3), and suggests a possible role of this
family of hormones in the prevention and/or treatment of
neurodegenerative diseases. Alzheimer’s disease (AD) is the
most common neurodegenerative disease associated with
aging, affecting over 18 million people worldwide, repre-
senting 50–70% of all causes of dementia, and constituting a
major public health problem (4). In fact, although specific
drugs that may help to improve patients’ quality and ex-
pectancy of life are currently available, to date there is no way
to prevent, reverse, or even stop the course of AD (5).

A number of studies indicated the presence of an evident
sex dependence in AD prevalence (2:1 female to male), symp-
tomatology, and prognosis (6). Sex steroids have been potent
neuroprotective agents in a variety of in vivo models of AD
(7), and a decreased incidence and delay in the onset of AD
has been described in women on hormone therapy (HT) (8).
HT in postmenopausal women has improved cognitive and
visual-spatial functions (6), and appears to protect against
AD; however, it is of little or no value once the disease has
progressed so as to display clinical signs. In addition, a num-
ber of critical factors must be preliminarily considered,
which may determine the efficacy of HT in the central ner-
vous system (CNS) (i.e. age of initiation of the therapy, type
of estrogen and progestin used, route of delivery and dose,
genetic background) (9). These critical issues may have sig-
nificantly contributed to the negative conclusions of the
Women’s Health Initiative Memory Study (WHIMS) about
the protective effect of estrogen against dementia in post-
menopausal women (10–13). As a matter of fact, the role of
estrogen against AD in the clinical practice is still an open
issue.

A few years ago, a novel gene, named seladin-1 (for SE-
Lective AD INdicator-1), has been isolated and found to be
down-regulated in brain regions affected by AD (14). Re-
markably, overexpression of seladin-1 in neuroglioma H4
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cells conferred protection against �-amyloid-mediated tox-
icity and oxidative stress. The neuroprotective effect of sela-
din-1 appears to be mediated, at least in part, by its inhibitory
effect on the activation of caspase-3, a key mediator of ap-
optosis (14). A subsequent study demonstrated that seladin-1
is the gene encoding 3�-hydroxysterol �24-reductase, which
catalyzes the reduction of the �24 double bond of desmos-
terol to produce cholesterol. Mutations of this gene have been
found in desmosterolosis, a rare severe multiple-congenital-
anomaly syndrome, including developmental and growth
retardation (15). We have demonstrated previously that in
neuroblast long-term cell cultures from human fetal olfactory
epithelium [fetal neuroepithelial cells (FNC)] (16), 17�-es-
tradiol (17�E2) and the selective estrogen receptor modula-
tors (SERMs) raloxifene and tamoxifen effectively protect
against �-amyloid toxicity, oxidative stress, and apoptosis,
and up-regulate the expression of seladin-1 (17). The estrogen
receptor (ER) �-selective agonist propylpyrazole-triol ex-
erted a much stronger stimulatory effect on seladin-1 expres-
sion than the ER�-selective agonist diarylpropionitrile in
FNCs, which express both ER� and ER� (18), thus indicating
that the expression of this neuroprotective factor is mainly
mediated by ER� activation (17). These data suggested that
seladin-1 may be a mediator of the protective effects of es-
trogen in neuronal cells.

The aim of the present study was to provide for the first
time a direct demonstration that this is the case. To this
purpose, seladin-1 expression was silenced in FNCs using
the small interference RNA (siRNA) technology. In “si-
lenced” cells the effect of 17�E2 against �-amyloid toxicity,
oxidative stress, and apoptosis was evaluated. Furthermore,
the presence and functionality of estrogen-responsive ele-
ments (EREs) upstream from the promoter region of the
seladin-1 gene were assessed.

Materials and Methods
Materials

Media and sera for cell cultures were purchased from Life Technol-
ogies (Grand Island, NY), and tissue plasticware was obtained from
Falcon (Oxnard, CA). 17�E2 was purchased from Sigma (Milan, Italy)
and dissolved in absolute ethanol to a final concentration of 0.1 mm.
Human �-amyloid peptide was obtained from Calbiochem (San Diego,
CA), solubilized in 5% acetic acid, and stored at �20 C. Rabbit anti-
seladin-1 N-terminal antibody, tamoxifen, genistein, quercetin, and
zearalenone were from Sigma. Raloxifene was kindly provided by Eli
Lilly and Co. (Indianapolis, IN). Interferon (IFN)-� was from R&D Sys-
tems, Inc. (Minneapolis, MN). Stigmasterol was from Steraloids Inc.
(Newport, RI). N,O-Bis(trimethylsilyl)-trifluoroacetamide at 10% in tri-
methyl-chlorosilane was from Sigma.

FNC cultures

FNC were isolated from human fetal olfactory neuroepithelium,
cloned, and long-term cell cultures were established and propagated in
Coon’s modified Ham’s F12, supplemented with 10% fetal calf serum
(FCS) and antibiotics (growth medium), as described previously (16).
The B4 clone, showing the highest levels of expression of neuronal and
olfactory markers, was used in this study. In addition, the B4 clone
stained positively for both the ER� and ER� (18). When the cells were
treated with 17�E2, the growth medium was without phenol red and
supplemented with 1% charcoal-stripped FCS.

Seladin-1 siRNA design

The design of siRNA sequences was based on current recommenda-
tions for siRNA oligonucleotide design, such as a 19 nucleotide (nt)
double-stranded complementary region, a GC ratio between 45 and 55%,
and exclusion of specific motifs such as G or C triplets (19). In addition
to current recommendations, siRNAs were designed also on the basis of
structural characteristics of the target RNA. For prediction of RNA
secondary structures, a computer-aided structure analysis was per-
formed as described (20). The computer program mfold 2.0, which is
included in the Heidelberg Unix Sequence Analysis Resources (21), was
used to predict secondary structures of the seladin-1 RNA. Based on this
computer analysis, favorable target elements for short-chain inhibitory
nucleic acids, such as large loops, bulges, joints, and free ends (20), were
selected on the basis of semiempirical data. The alignment of the se-
quences of the siRNAs with sequences of the National Center for Bio-
technology Information (NCBI) nt databases was performed using the
Basic Local Alignment Search Tool (BLAST) program (NCBI, Bethesda,
MD). The sequences showed no homology with any cDNA from the
database. siRNAs against seladin-1 (target sequence: 5�-AAGAAG-
TACGTCAAGCTGCGT-3�) and negative control (siCONTROL nontar-
geting pool no. 2) were synthesized by a commercial supplier
(Dharmacon, Lafayette, CO). All siRNAs were High-Performance Pu-
rity-Grade and analyzed by matrix-assisted laser desorption-ionization
time-of-flight mass spectrometry. The lyophilized RNA was dissolved
in ribonuclease-free deoxyribonuclease-free water (Sigma) resulting in
a 20 �m stock solution.

Seladin-1 siRNA transfection and IFN induction test

Cells were grown to confluence between 70 and 80% in six-well
culture plates and washed with prewarmed (37 C) PBS. siRNAs target-
ing seladin-1 or control siRNAs (100 nm) were mixed with Lipofectamine
2000 (Invitrogen s.r.l., Milan, Italy) and administered to the cells (24 h),
following the manufacturer’s instructions. For seladin-1 expression
studies, treatment with 17�E2 (10 nm) or IFN-� (1000 U/ml) was per-
formed for an additional 24 h after silencing. Experiments (n � 3) were
performed in triplicate.

Quantitative RT-PCR analysis

Total RNA was isolated using NucleoSpinRNAII (Macherey-Nagel,
Duren, Germany) with deoxyribonuclease treatment according to the
manufacturer’s instructions, the concentration determined spectropho-
tometrically with Nanodrop ND-1000, and the integrity of RNA was
verified by measuring expression of �-actin gene by real-time RT-PCR
(Hs00242273_m1; Applied Biosystems, Foster City, CA). The amount of
seladin-1 mRNA was determined as described previously (16). The IFN
induction test was performed by real-time RT-PCR measuring the ex-
pression of the following genes: chemokine C-X-C motif ligand 10
(CXCL10) (Hs99999049_m1; Applied Biosystems); chemokine C-X-C
motif ligand 11 (CXCL11) (Hs00171138_m1; Applied Biosystems); and
indoleamine-pyrrole 2,3 dioxygenase (INDO) (Hs00158027_m1; Ap-
plied Biosystems). According to the comparative threshold cycle (Ct)
method, the amount of target mRNA normalized to an endogenous
reference (18S rRNA) and relative to an internal control was calculated
by 2���Ct. The results (mean � se) were expressed as fold mRNA
variations compared with control. All measurements were performed in
triplicate, and three experiments were performed.

Western blot analysis

Samples were kept in lysis buffer [20 mm Tris-HCl, 150 mm NaCl, 0.2
mm EDTA, 0.3% Triton X-100, 1 mm Na3VO4, 1 mm phenylmethylsul-
fonylfluoride, and 1 �g/ml leupeptin (Sigma)] for 2 h at 0 C. Protein
concentration was measured using a Coomassie Bio-Rad protein assay
kit (Bio-Rad Laboratories, Inc., Hercules, CA). SDS-PAGE and Western
blot analysis for the detection of seladin-1 were performed as described
previously (22). The intensities of the immunoreactive bands were quan-
tified by Quantity One software on a ChemiDoc XRS instrument (Bio-
Rad Laboratories). Each band was normalized with respect to its cor-
responding signal stained with ponceau to verify the degree of protein
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loading, and the values were expressed as an intensity ratio (OD units).
Results are the mean � se of three experiments.

Cell cholesterol measurement

The amount of cell cholesterol was determined by gas chromatog-
raphy-mass spectrometry as described previously (23), with minor mod-
ifications. Briefly, cells were maintained in medium without fetal bovine
serum for at least 6 h, then lysed in 1 n NaOH, and the cell lysate was
used for cholesterol quantification or frozen for storage at �80 C until
cholesterol measurement. Aliquots corresponding to 5.0 �g protein, as
determined by Coomassie staining, were used for cholesterol determi-
nation. After the addition of stigmasterol (1000 ng) as an internal stan-
dard, sterols were extracted with n-exane, derivatized with N,O-
Bis(trimethylsilyl)-trifluoroacetamide at 10% in trimethyl-chlorosilane,
and automatically injected in a Hewlett-Packard gas chromatography-
mass spectrometry system (Hewlett-Packard Co., Palo Alto, CA). A
six-point calibration curve in the 50- to 2000-ng cholesterol range was
used for cholesterol quantification. The peak area ratios were calculated
using the signals at 458 and 484 m/z (mass-to-charge ratio) for choles-
terol and stigmasterol, respectively. Each point was performed in du-
plicate, and the results represent the mean � se of three experiments.

Viability assays

Cell viability after �-amyloid exposure was determined by 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium assay, as described previously (17). Briefly, the cells
were seeded in 96-well plates for 24 h in medium without antibiotics.
Thereafter, the cells were subjected to seladin-1 silencing or to control
siRNA for 24 h, and 17�E2 (10 nm) was added for a further 48 h in
selected wells. During the last 18 h, 100 nm �-amyloid was added to each
well, and afterwards the assay was performed according to the manu-
facturer’s instructions. Multiwell dishes were analyzed by an ELISA
plate reader (Seac-Radim, Moncalieri, Italy), and absorbance at 490 nm
was considered directly proportional to the number of living cells. The
results were expressed in terms of mean � se viable cells per well in three
different experiments.

To assess the resistance against H2O2-mediated oxidative stress, vi-
able cells were determined by Trypan blue dye exclusion test, as de-
scribed previously (17). Briefly, the cells were cultured in 25 cm2 flasks
in medium without antibiotics. Thereafter, seladin-1 silencing or neg-
ative control silencing was performed for 24 h, and 17�E2 (10 nm) was
added for 48 h to selected cell samples. During the last 20 h, 200 �m H2O2
was added. Subsequently, cells were stained with Trypan blue dye for
1 min. Blue-positive (i.e. dead) and white-negative (i.e. living) cells were
counted in 10 fields (20�), and the results were expressed as the mean �
se of viable (over total) cells per field in three different experiments.

Immunostaining for cleaved caspase-3

The amount of caspase-3-immunoreactive cells was determined as
described previously (17). Briefly, the cells were seeded in chamber
slides and incubated for 24 h in medium without antibiotics. Thereafter,
seladin-1 silencing was performed, 17�E2 (10 nm) was added to selected
chamber slides, and the slides were incubated at 37 C in a humidified
atmosphere for 48 h (5% CO2/95% air). During the last 20 h, 200 �m H2O2
was added to each chamber slide. The cells were then fixed in parafor-
maldehyde, incubated with a polyclonal antibody against cleaved
caspase-3 (Asp 175) (Cell Signaling Technology, Inc., Beverly, MA), and
subsequently with a biotinylated secondary antibody. The reaction
product was visualized by ABC peroxidase-based detection protocol
and AEC kit (Vectastain ABC kit; Vector Laboratories, Burlingame, CA).
Finally, the cells were counterstained with hematoxylin according to the
manufacturer’s instructions. Apoptotic cells per field were counted in 10
fields (40�), and the results were expressed as the number of apoptotic
cells per field (mean � se). Experiments (n � 3) were performed in
triplicate.

In silico analysis and vector design

The gene sequence on chromosome 1 was localized using the data-
base NCBI Map Viewer (http://www.ncbi.nlm.nih.gov/mapview/

maps.cgi). A 6-kb region upstream seladin-1 open reading frame was
analyzed using eukaryotic promoter identification programs (http://
www.softberry.com/berry.phtml? topic�fprom&group�programs&
subgroup�promoter; http://www.softberry.com/berry.phtml?topic�
tssw&group�programs&subgroup�promoter; and http://www.
softberry.com/berry.phtml?topic�tssg&group�programs&subgroup�
promoter), and a promoter sequence was identified between �383 and
�112 bp from the translational start site. A further analysis was per-
formed using the GRAIL software (http://compbio.ornl.gov/grailexp/),
which detects CpG islands, and TFPROM software (http://www.cbrc.jp/
research/db/TFSEARCH.html) to identify transcription factor binding sites.
The 1477-bp region detected (promosel) was amplified from human
genomic DNA by PCR using the primers 5� F2(kpn)-ggtaccTCTT-
GGTCAATCTGCATTCG-3�; 5�R2(nhe)-gctagcCTGGAGTCAAAGCAGC-
TTCC-3�, containing flanking KpnI and NheI recognition sequences, respec-
tively. Primer sequences were selected using the software Primer Express
(Applied Biosystems). The PCR products were gel purified and ligated
upstream of the firefly luciferase coding region of the ptata-luc plasmid (24)
after subcloning in pCRII-TOPO (Invitrogen), thus obtaining the ptataluc-
sel plasmid. The ptata-luc vector backbone contains a minimal TATA E1b-
promoter without enhancers; therefore, changes in luciferase activity can be
attributed to the effect of the promosel insert. As a positive control, a 13-bp
ERE sequence from the human complement C3 gene promoter (25) was
inserted in the ptata-luc plasmid using the method reported by Hall et al.
(26) to obtain the ptataluc-C3 ERE plasmid.

Cell transfection experiments

Chinese hamster ovarian (CHO) cells were cultured in Ham’s/F12
medium supplemented with 10% FCS and maintained at 37 C in a
humidified atmosphere containing 5% CO2. The cells were plated at
80–90% confluence in 96-well dishes, in DMEM/F12 medium supple-
mented with FCS-charcoal-stripped 10% without phenol red or antibi-
otics 24 h before transfection. The following vectors were cotransfected
into the cells: 1) ptataluc-sel plasmid, containing the promosel region, or
positive control ptataluc-C3 ERE plasmid upstream from the firefly
luciferase coding sequence (100 ng/well); 2) pCMV-ER overexpression
plasmid containing the ER� coding sequence (18 ng/well) (27); and 3)
pGL4.75 normalization plasmid containing the renilla luciferase coding
sequence under the control of the CMV promoter (2 ng/well). The cells
were transfected using Lipofectamine 2000 according to the manufac-
turer’s recommendations. Five hours after transfection, the cells were
treated with ER ligands 20 h before luciferase assays were performed.
Luciferase reporter assays were performed using the Dual-Glo Lucif-
erase Reporter Assay System (Promega Corp., Madison, WI). Passive
lysis buffer was added to each well, and the dishes were incubated for
15 min at room temperature. An equal volume of Dual-Glo Luciferase
Reagent was placed in every well and incubated for 10 min. Firefly
luciferase luminescence was measured. Before measurement of renilla
luciferase, 100 �l of the Stop and Glo reagent (Promega) was added to
each well to quench the firefly luciferase reaction. Renilla luciferase
luminescence was measured after an incubation of 10 min. All luciferase
measurements performed on a Victor3 multilabel reader (PerkinElmer
Life And Analytical Sciences, Inc., Waltham, MA) represent an average
of readings obtained in triplicate. Relative firefly luciferase light output
was normalized by renilla luciferase output after appropriate subtrac-
tion of background light output. In most cases, data points represent the
mean � se of two or three iterations of three to six independent
experiments.

Statistical analysis

Data were expressed as mean � se. Statistical differences were an-
alyzed using the unpaired Student’s t test. Significance was adjusted for
multiple comparisons of means using Bonferroni’s approximation.

Results
Seladin-1 silencing in FNC

Seladin-1 siRNA and control siRNA were transfected into
FNC by lipofection. Real-time RT-PCR analysis for the de-
termination of seladin-1 mRNA showed that the amount of
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the transcript was markedly decreased in FNC after 48 h from
administration of seladin-1 targeting siRNA (silFNC), but
not in cells transfected with control siRNA(C-silFNC), com-
pared with untreated cells (Fig. 1A). Treatment with 17�E2
(10 nm) increased the expression level of seladin-1 in FNC,
confirming previously reported data (17), and in C-silFNC,
but not in silFNC. Because it has been shown that siRNA may
activate the innate immune response and trigger the expres-
sion of IFN-responsive genes (28, 29), the transcription level
of the IFN-responsive genes INDO, CXCL10, and CXCL11
was also assessed by real-time RT-PCR (Table 1). No signif-
icant increase was observed in silFNC compared with FNC,
thus indicating that the introduction of the seladin-1 target-
ing siRNA, selected for our experimental design, does not
have an IFN-mediated off-target effect.

In agreement with the mRNA data, the amount of sela-
din-1 protein was also significantly decreased in silFNC, but
not in C-silFNC, as assessed by immunoblot analysis (Fig.
1B). A significant reduction of seladin-1 protein was main-
tained also after 72 h from silencing (data not shown). In
agreement with mRNA data, 17�E2 determined a significant
increase of seladin-1 protein in FNC and in C-silFNC, but not
in silFNC. The measurement of cell cholesterol in silFNC
revealed a moderate, yet not statistically significant, decrease
vs. FNC. The exposure to 10 nm 17�E2 determined a signif-
icant increase in the amount of cell cholesterol in FNC, but
not in silFNC (Fig. 1C).

Loss of the protective effect of 17�E2 on cell survival in
silFNC

We have previously demonstrated that 17�E2 effectively
counteracts �-amyloid-induced toxicity in FNC (17). Here,
we confirmed those findings in both FNC and C-silFNC,
whereas we found that in silFNC 17�E2 (10 nm) fails to
protect the cells from the toxic insult of �-amyloid, as de-
termined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme-
thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay (Fig.
2A). It has to be said that these results may not be affected
by differences in cell proliferation because we have previ-
ously shown that 10 nm 17�E2 does not have any effect on
the rate of FNC proliferation (17).

Furthermore, the effect of 17�E2 against H2O2-mediated
oxidative stress in silFNC was assessed by the Trypan blue
dye exclusion test. 17�E2 exposure prevented H2O2-induced
cell death in FNC, as demonstrated previously (17), and in
C-silFNC. Conversely, the pro-survival effect of this hor-
mone was lost in silFNC (Fig. 2B). Overall, these results
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FIG. 1. A, Amount of seladin-1 mRNA in FNC and in FNC treated
with seladin-1 targeting siRNA (silFNC) or with control siRNA (C-
silFNC) for 24 h, with or without exposure to 10 nM 17�E2 for a further
24 h, as assessed by real-time RT-PCR. Experiments (n � 3) were
performed in triplicate. B, Densitometric analysis (values are re-
ported as OD units) of Western blot experiments (n � 3) for the
expression of seladin-1 protein detected in FNC, silFNC, or C-silFNC
(24 h treatments), with or without exposure to 10 nM 17�E2 for a
further 24 h. A representative immunoblot is shown at the bottom of
the panel. *, P � 0.05 vs untreated. FNC. #, P � 0.05 vs. the corre-
sponding untreated cells (A and B). C, Amount of cell cholesterol in
FNC and silFNC (siRNA administration for 24 h), with or without

TABLE 1. IFN-�-induced gene expression (fold increase vs. FNC)

INDO CXCL11 CXCL10

FNC 1 � 0.2 1 � 0.095 1 � 0.09
silFNC 0.39 � 0.05a 0.2 � 0.05a 1.39 � 0.2
�IFN-� 3373.4 � 21a 359.5 � 2.5a 77.17 � 6.2a

The values represent the mean � SE of three independent exper-
iments, performed in triplicate.

a P � 0.05.

exposure to 10 nM 17�E2 for a further 48 h. Each point was performed
in duplicate, and the results represent the mean � SE of three ex-
periments. *, P � 0.05 vs. untreated FNC.
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indicate for the first time that seladin-1 plays a crucial role
in mediating the protective effects of 17�E2 against �-amy-
loid toxicity and oxidative stress.

Loss of the effect of 17�E2 in preventing H2O2-induced
caspase-3 activation in silFNC

There is evidence that seladin-1 prevents caspase-3 ac-
tivation (14). We have previously shown that 17�E2 coun-
teracts H2O2-induced caspase-3 activation in FNC (17). To
determine whether seladin-1 is a mediator of the anti-
apoptotic effect of 17�E2 in these cells, we evaluated
whether this hormone retains its ability to prevent H2O2-
induced caspase-3 activation in silFNC. The results, shown
in Fig. 3A, indicate that a few cleaved caspase-3 positive cells
per field were detectable by immunocytochemistry in un-
treated or in 17�E2-treated FNC and silFNC. Upon exposure
to 200 �m H2O2, a significant increase in the amount of

cleaved caspase-3 positive cells was observed, which was
counteracted by 17�E2 in FNC, as demonstrated previously,
but not in silFNC. A representative example is shown in Fig.
3B.

Characterization of the seladin-1 gene promoter and
identification of ERE sequences

The seladin-1 gene promoter sequence (�383/�112 bp
from the translation start site) was identified for the presence
of several general transcription factor binding sites and of a
wide CpG island going from �551 to �467 (Fig. 4). A 6-kb
region upstream from the identified gene promoter was an-
alyzed to identify regulatory sequences that confer estrogen
responsiveness acting as transcriptional enhancers. This re-
gion revealed no perfectly palindromic ERE sequences, al-
though a large number of half-palindromic EREs were found
from �5000 to �3000, as shown in Fig. 5A. Here, two short

FIG. 2. A, Effect of 17�E2 (10 nM for 48 h) against �-amyloid (BA) (100
nM for 18 h) toxicity in FNC, silFNC, or C-silFNC. B, Effect of 17�E2
(10 nM for 48 h) against oxidative stress (200 �M H2O2 for 20 h) in
FNC, silFNC, or C-silFNC. The results were expressed as mean per-
centage � SE of viable cells per well in three different experiments. *,
P � 0.05 vs. the corresponding untreated control cells. #, P � 0.05 vs.
the corresponding cells exposed to �-amyloid (A) or H2O2 (B).

FIG. 3. A, Assessment of cleaved caspase-3 positive cells by immu-
nocytochemistry. The cells were treated with 17�E2 (10 nM for 48 h),
H2O2 (200 �M for 20 h), or with 17�E2 (10 nM for 48 h) plus H2O2 (200
�M, added during the last 20 h of 17�E2 exposure). B, Representative
example showing FNC (left) and silFNC (right) pretreated with 17�E2
before exposure to H2O2. The arrows indicate cells showing a positive
immunostaining for cleaved caspase-3. *, P � 0.05 vs. the correspond-
ing untreated cells and cells treated with 17�E2. #, P � 0.05 vs. the
corresponding cells treated with H2O2. **, P � 0.05 vs. FNC treated
with 17�E2 plus H2O2. Experiments (n � 3) were performed in
triplicate.
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sequences showing a very high homology percentage with
ERE-like sequences, whose transactivational ability had al-
ready been observed for other gene promoters, were also
detected:

1. A 29-bp region TGGCCA(N)3TGGTC(N)9TGACCN
(�4148) (seq-A, gray square), which shows a 97% ho-
mology with a sequence detected in the BRCA1 gene
promoter, whose estrogenic responsiveness has already

FIG. 4. A, Characterization of the seladin-1 gene promoter (marked in gray). The translational start site (ATG) is indicated in capital letters;
the CpG island is underlined. The major transcription factor binding sites are boxed. B, General transcription factor binding sites and their
localization on the seladin-1 gene promoter sequence.

-4384
aatgaattaaccaactcttggtcaatctgcattcggacttcttttttgttttggacagggtcagtctatcacc
caggctggagtacagtggtgctatccatagatcactgcagcctcaaccttccggattcaaacgattctcctgc
ctcagcctcccaagtagctgggattataggtatgcaccaccatgccaggctaatttttggattttcagtagag
acggggtttcaccatgttggccaggctggtctcgaactcctgacctcaagtgacccacctcccccaggcctcc
caaagtgctgggattacaggcatgagccaccaaccttggcctgttagggctttactttaaaacaaagaaaaca
aaggtaatactatatatatttttttttttcttttttcttttttgagacagagtcttgctctgctgcccaggct
ggagtgcagtggcatgatctcagctcattgcaagctctgcctcctgggttcacgccattctcctgtctcagcc
tcctgagtagctgggactacaggcacccgccaccacacccagctaattttttgtatttttagtagagatgggg
tttcaccacattagccaggatggtcttgatctcctgaccttgtgatcttcccgcctcagcctcccaaagtgct
gggattacaggcgtgagccaccgcacctggccaaacaaaggtaatattcttaaagaagttccaggattaatac
tcagtccaatctcctaaattttagcatgcataagaataacgtagctgacttcttaaaaagtagatttctggcc
ccacttctggagatttagcttcagtgggatatggtagagtctaggactctgcattttagcaagcattctgatg
tagttggtctacaaaccacacttcaacaaaccctgttctaaaacttctacttcatatctatggaacggaacca
catgaatggctcccaacttctggatctttccatcatttgaatctgctcccttgattattgtgtgaagtgtagt
ttgcagaccaactgcattagaattctctattcaccagaataagacattgatcaggtaagtcacttaacctgag
tctaaatgtccccatttatttaaaaaaaaatacatattaattccctgcattgccactcctgagactggttgca
aagatcaaatgatctcagtagctgcactgtacaaatataagaaaatgcaatttgttaggactctggtatttat
catgctcctttactgaagaaaaaaaaaactgttctttacactctatttattaagaaagaaatagaggctcaca
ttgtagaaagattgctacgtggtcaaactataaaaggggtttacctagttaacctgaaaagttcttgcccaga
acatcctattcctaagcattctgactgtctgcatgctccatcaactctgtaagtaatgtataatatgaataga
ttccctgacaaaggaagctgctttgactccagcaaa
-2887

SeqA 5’-TGGCCAGGCTGGTCTCGAACTCCTGACCT-3’
BRCA1      5’-TGGTCAGGCTGGTCTGGAACTCCTGACCT-3’
Alu ERE    5’-TGGTCAGGCTGGTCTCAAACTCCTGACCT-3’

SeqB 5’-TAGCCAGGATGGTCTTGATCTCCTGACCT-3’
BRCA1    5’-TGGTCAGGCTGGTCTGGAACTCCTGACCT-3’
Alu ERE    5’-TGGTCAGGCTGGTCTCAAACTCCTGACCT-3’

A B

C

SeqA

SeqB

SeqA 5’-TGGCCAGGCTGGTCTCGAACTCCTGACCT-3’
BRCA1      5’-TGGTCAGGCTGGTCTGGAACTCCTGACCT-3’
Alu ERE    5’-TGGTCAGGCTGGTCTCAAACTCCTGACCT-3’

SeqB 5’-TAGCCAGGATGGTCTTGATCTCCTGACCT-3’
BRCA1    5’-TGGTCAGGCTGGTCTGGAACTCCTGACCT-3’
Alu ERE    5’-TGGTCAGGCTGGTCTCAAACTCCTGACCT-3’

FIG. 5. A, Half-ERE-rich regions (gray boxes) upstream from the seladin-1 gene promoter. SeqA, gray square; SeqB, black square. Primer
sequences are underlined. B, Sequences found upstream from the seladin-1 gene promoter, compared with those found in the BRCA1 gene
promoter and to Alu EREs. The mismatches are marked in light gray. The half-palindromic sequences are underlined; the spacer regions are
in italics. C, Homology percentage of the aligned sequences.
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been proven (30). Seq-A also shows a high homology
(86.4%) with Alu ERE sequences (31) (Fig. 5, B and C).

2. A 28-bp sequence (seq-B, black square), located at
�3789 (82.7 and 79.3% homology with BRCA1 and Alu
ERE, respectively, Fig. 5, B and C).

Only two of the five mismatches found are located in the
responsive sequences (Fig. 5B).

Evaluation of the estrogen responsiveness of the seladin-1
gene by luciferase assays

To verify the estrogen responsiveness of the detected
half-palindromic EREs upstream from the promoter re-
gion of the seladin-1 gene, the sequence from �4384 to
�2892 was cloned into ptata-luc plasmid (ptataluc-sel) and
transfected into CHO cells, to perform transactivational
assays. The cells were cotransfected with an ER� overex-
pressing vector (pCMV-ER). Treatment with 17�E2 (1 and
10 nm) induced a dose-dependent significant increase in

luciferase transcription, as assessed by light output mea-
surement (1.6- and 2.9-fold vs. control, respectively). The
results were comparable to those observed in CHO cells
transfected with the same plasmid containing ERE se-
quences within the C3 gene promoter (ptataluc-C3 ERE),
as a positive control (Fig. 6A). Luciferase activity in ptata-
luc-sel transfected cells increased only in the presence of
both ER� overexpression and 17�E2 stimulation, thus in-
dicating the specificity of the assay (Fig. 6B).

We had previously demonstrated that the SERMs ralox-
ifene and tamoxifen are able to up-regulate the expression
of seladin-1 (17). Therefore, in the present study, the re-
sponsiveness of the promoter region of the seladin-1 gene
to these molecules was also tested. As shown in Fig. 7,
treatment with 10 nm raloxifene or tamoxifen induced a
significant increase in luciferase activity. Again, the results
were similar to those observed in CHO cells transfected
with ptataluc-C3 ERE. Finally, the responsiveness of the
ptataluc-sel to the phytoestrogens genistein, zearalenone,
and quercetin, which bind ERs with different affinity, was
assessed. Preliminary results obtained with genistein in-
dicated that this soy isoflavone also up-regulates the
expression of seladin-1 (Luciani, P., and C. Deledda, un-

FIG. 6. A, Normalized luciferase activity elicited by 17�E2 (1 or 10 nM for
20 h) in CHO cells cotransfected with a plasmid containing the C3 gene
promoter (ptataluc-C3 ERE) (positive control) or the promosel sequence
(ptataluc-sel) and an ER�-overexpressing plasmid (pCMV-ER). *, P � 0.05
vs. untreated cells. #, P � 0.05 vs. cells transfected with ptataluc-sel and
treated with 1 nM 17�E2. Experiments (n � 6) were performed in triplicate.
B, Specificity assay showing normalized luciferase activity of ptataluc-sel
transfected cells in the presence or not of 17�E2 and/or pCMV-ER trans-
fection.*, P � 0.001 vs. cells only transfected with ptataluc-sel. Experiments
(n � 3) were performed in triplicate.

A

B

ptataluc-C3 ERE

ptataluc-sel

0 1 2 3 4 5 6 7 8 9

*

*

cpm firefly / cpm renilla

ptataluc-C3 ERE

ptataluc-sel

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

*

*

cpm firefly / cpm renilla 

FIG. 7. Normalized luciferase activity detected in CHO cells cotransfected
with pCMV-ER and the ptataluc-C3 ERE vector or the ptataluc-sel vector
before (white bars) and after (gray bars) treatment with 10 nM raloxifene for
20 h (A) or 10 nM tamoxifen for 20 h (B). *, P � 0.03 vs. untreated cells.
Experiments (n � 3) were performed in triplicate.
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published data). We found that 1 �m genistein and
zearalenone, but not quercetin, was able to induce lucif-
erase activity, as shown in Fig. 8.

Discussion

Both in vitro and in vivo evidence supports a protective role
of estrogen in the CNS (1–3); however, the efficacy of this family
of hormones against AD has not been completely ascertained
yet (9), and the molecular mechanisms of their action remain to
be definitely elucidated. The results presented in this study
demonstrate that the AD-related gene seladin-1, whose expres-
sion is up-regulated by 17�E2 and SERMs (17), is one of the
genes mediating the neuroprotective effects of estrogen. In fact,
in our neuronal precursor cell model, the silencing of the sela-
din-1 gene completely abrogated the protective effect of 17�E2
against the toxic insults of �-amyloid and H2O2. In silFNC a
significantly reduced expression of seladin-1 was obtained, and
it is noteworthy that 17�E2 was no more able to up-regulate the
expression of this gene. Because siRNA may activate the innate
immune response and trigger the expression of IFN-responsive
genes (28, 29), we demonstrated that the introduction of siRNAs
targeting seladin-1 in FNC did not stimulate the expression of

three of these genes (i.e. INDO, CXCL11, and CXCL10). The
reduction of the protein amount of seladin-1 obtained by gene
silencing was less marked, although statistically significant,
compared with the mRNA level. This result is probably due to
a slow turnover of this protein. Moreover, the amount of cell
cholesterol, the product of the seladin-1 enzymatic activity, did
not significantly decrease 72 h after silencing. This is likely
ascribable to the activity of the residual protein, the complex
homeostatic system for cholesterol, and its extremely low turn-
over in the CNS (32–35). The moderate reduction of the amount
of cell cholesterol in silFNC may explain the finding that sela-
din-1 silencing did not increase per se the detrimental effect of
�-amyloid and oxidative stress on cell viability. Conversely, we
demonstrated that the exposure to 17�E2, which significantly
increased both seladin-1 expression and cell cholesterol amount
in FNC, prevented the toxic effect of �-amyloid and oxidative
stress in these cells, yet not in silFNC. This finding is in agree-
ment with our very recent demonstration that the 3�-hydrox-
ysterol �24-reductase activity of seladin-1 plays a fundamental
role in preventing �-amyloid-mediated toxicity (23). The spec-
ificity of our results was validated by the observation that the
effects of 17�E2 on both seladin-1 expression and on neuro-

ptataluc-C3 ERE

ptataluc-sel

0 1 2 3 4 5 6 7 8 9 10

*

*

cpm firefly / cpm renilla

A

ptataluc-C3 ERE

ptataluc-sel

0 1 2 3 4 5 6 7

*

*

cpm firefly / cpm renilla

B

C

ptataluc-C3 ERE

ptataluc-sel

0 1 2 3 4

cpm firefly / cpm renilla

FIG. 8. Normalized luciferase activity detected in CHO cells cotransfected with pCMV-ER and the ptataluc-C3 ERE vector or the ptataluc-sel
vector before (white bars) and after treatment with: 1 �M genistein for 20 h (A, light gray bars); 1 �M zearalenone for 20 h (B, gray bars); and
1 �M quercetin for 20 h (C, black bars). *, P � 0.03 vs. untreated cells. Experiments (n � 3) were performed in triplicate.
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protection in cells treated with control siRNA were not different
from those found in FNC. The neuroprotective properties of
seladin-1 have also been associated with its inhibitory activity
on the activation of the pro-apoptotic enzyme caspase-3
(14), and we have demonstrated previously that 17�E2
prevents H2O2-induced caspase-3 activation (17). There-
fore, in the present study, we also evaluated whether sela-
din-1 is a mediator of the inhibitory effect of estrogen on the
apoptotic cascade. In basal conditions, a few cleaved
caspase-3 positive cells were detected both in FNC and sil-
FNC. This finding is in agreement with previous observa-
tions in pituitary tumors. In fact, although lower expression
levels of seladin-1 were found in GH-secreting adenomas
compared with nonfunctioning adenomas, the amount of
activated caspase-3 was similar in the two groups of tumors
(36). It is conceivable that, in basal conditions, caspase-3 is
minimally activated, independent of the amount of expres-
sion of seladin-1. In agreement with cell viability experi-
ments, we found a similar increase in the number of apo-
ptotic cells in FNC and silFNC upon exposure to H2O2.
However, 17�E2 was able to counteract caspase-3 activation
in FNC, yet not in silFNC, again suggesting the presence of
a critical threshold for the expression and activity of sela-
din-1, to warrant effective protection against cell degenera-
tion and apoptosis. Overall, these results indicate that sela-
din-1 is a pivotal mediator of the effects of 17�E2 against
�-amyloid- and oxidative stress-induced toxicity, and
against caspase-3 activation by H2O2 in human fetal neuro-
blasts. It is noteworthy that an important role of caspase-3 in
determining �-amyloid production has been demonstrated
very recently. In fact, it has been shown that caspase-3, by
cleaving the adaptor protein GGA3 involved in �-secretase
trafficking, prevents the degradation of this enzyme, thus
increasing �-amyloid generation (37). These findings address
caspase-3, together with its negative modulator seladin-1, as
a possible target for pharmacological interventions against
AD and, therefore, further support a proper role of estrogen
in neuroprotective strategies. Of course, future trials de-
signed to test the efficacy of estrogen against dementia
should consider several critical issues that may have heavily
influenced the negative results of the WHIMS, the only ran-
domized clinical trial focused on the effects of HT on de-
mentia risk, to date (10–13). For instance, in the WHIMS,
women older than 65 yr were enrolled. Recent data suggest
that HT confers neuroprotection when initiated closely to the
menopausal transition (9), in agreement with the recent ob-
servation that 17�E2 exerts profound neuroprotective effects
in mice when administered immediately after ovariectomy,
but not after a delayed period of time (38). Another important
issue is the choice of progestins. In the WHIMS the combined
effect of medroxyprogesterone acetate and estrogen, but not
estrogen alone, had a significant negative impact on demen-
tia risk (9). Other studies supported a negative effect of
medroxyprogesterone acetate, whereas a beneficial effect of
natural progesterone in the CNS was addressed (39–41).

Furthermore, in the present study, the seladin-1 promoter
region was characterized to determine whether the estrogen
responsiveness of this gene is mediated by EREs. The sela-
din-1 gene promoter was localized at �383 bp from the trans-
lation start site. The sequence was analyzed by transcription

factor binding motif identification softwares (42, 43), which
allowed the identification of general transcription factor
binding sites. The estrogen responsiveness results from the
presence of ERE sequences that can act as enhancers and that
are usually located many kilobase pairs upstream from the
transcription start site (44). In the 6-kb region upstream from
the seladin-1 promoter that was analyzed, several half-pal-
indromic ERE sequences were detected. These sequences are
able to activate the transcription of the downstream genes
even more when they are spaced by 15–20 nts (45). Some of
these half-EREs have an AT-rich flanking region, which in-
creases their affinity for ERs (46). The higher frequency of
these sequences was in the 1.5-kb region, going from �4384
to �2887, in which two interesting motifs (seqA and seqB)
were detected; these motifs show high similarity with two
sequences previously described in: 1) the BRCA1 gene pro-
moter, a gene known to be involved in the development of
breast and ovarian cancer (47); and 2) inside mutated Alu
repeated elements (31). The estrogen responsivity of these
sequences has been demonstrated (30, 31).

To verify the functionality of the half-palindromic ERE se-
quences upstream from the promoter of the seladin-1 gene,
transcriptional transactivation assays in response to adminis-
tration of 17�E2, SERMs, and phytoestrogen molecules were
performed in CHO cells cotransfected with vectors containing
the putative enhancer ERE sequences of seladin-1 and ER�. The
choice to use ER� was based on the fact that we had demon-
strated previously that the expression of seladin-1 is signifi-
cantly increased by an ER�-selective agonist, but not by an
ER�-selective agonist (17). Transactivation assays demon-
strated the responsivity of the promoter of seladin-1 to 17�E2. It
is noteworthy that luciferase activity increased only in the pres-
ence of both ER� and 17�E2, thus validating the specificity of
the assay. These results indicate that the transcriptional acti-
vation occurs specifically as a consequence of the interaction of
the DNA with the ER�-hormone complex. Similarly, tamoxifen
and raloxifene increased the luciferase output signal, in agree-
ment with the up-regulation of seladin-1 expression after
SERMs treatment observed previously in FNC (17). Finally, we
evaluated whether phytoestrogens were also able to elicit pro-
mosel-induced transactivation of the reporter gene. Phytoestro-
gens are naturally occurring nonsteroidal chemicals derived
from plant sources that can bind ERs, and induce ER-dependent
DNA binding and activation of estrogen responsive promoters
in many cell types (48). Many of these compounds, particularly
isoflavanones, have been proposed as natural SERMs, and the
use of phytoestrogens, such as those obtained from soy, has
been proposed as an alternative therapy after menopause. Al-
though the efficacy of such compounds has not been rigorously
examined yet, there is evidence that phytoestrogens may be
neuroprotective, and positively affect mood, cognitive function,
and behavior (48, 49). According to these observations, a phase
II clinical trial is currently ongoing to assess the effects of soy
isoflavones on cognitive function in women and men with AD
(www.clinicaltrials.gov; trial no. NCT00205179). We found that
genistein (an isoflavone) and zearalenone (a mycoestrogen pro-
duced by the fungi Fusarium spp, which plays an important role
as a plant pathogen) (50) significantly increased the light signal,
whereas quercetin (a flavonol) did not. In agreement with these
observations, Mueller et al. (51) reported that genistein and
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zearalenone that bind, yet with different affinity, ER� and ER�
are able to transactivate the estrogen-responsive gene expres-
sion. On the other hand, quercetin has weak affinity for both
ER� and ER�, and its estrogen antagonistic property has been
postulated (52). Together, these findings indicate that the sela-
din-1 gene transcription is activated, upon exposure to 17�E2,
SERMs, or phytoestrogens, through a direct interaction of ER�
with the half-palindromic EREs located upstream from the gene
promoter. In summary, our results indicate that seladin-1 is a
direct mediator of the neuroprotective effects of 17�E2, and
support a role for estrogen and estrogen-related molecules in
pharmacological interventions against cognitive impairment
and dementia.
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