1,032 research outputs found
The Complexity of the Simplex Method
The simplex method is a well-studied and widely-used pivoting method for
solving linear programs. When Dantzig originally formulated the simplex method,
he gave a natural pivot rule that pivots into the basis a variable with the
most violated reduced cost. In their seminal work, Klee and Minty showed that
this pivot rule takes exponential time in the worst case. We prove two main
results on the simplex method. Firstly, we show that it is PSPACE-complete to
find the solution that is computed by the simplex method using Dantzig's pivot
rule. Secondly, we prove that deciding whether Dantzig's rule ever chooses a
specific variable to enter the basis is PSPACE-complete. We use the known
connection between Markov decision processes (MDPs) and linear programming, and
an equivalence between Dantzig's pivot rule and a natural variant of policy
iteration for average-reward MDPs. We construct MDPs and show
PSPACE-completeness results for single-switch policy iteration, which in turn
imply our main results for the simplex method
Constant Rank Bimatrix Games are PPAD-hard
The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash
equilibrium (NE) of a rank-, i.e., zero-sum game is equivalent to linear
programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an
FPTAS for constant rank games, and asked if there exists a polynomial time
algorithm to compute an exact NE. Adsul et al. (2011) answered this question
affirmatively for rank- games, leaving rank-2 and beyond unresolved.
In this paper we show that NE computation in games with rank , is
PPAD-hard, settling a decade long open problem. Interestingly, this is the
first instance that a problem with an FPTAS turns out to be PPAD-hard. Our
reduction bypasses graphical games and game gadgets, and provides a simpler
proof of PPAD-hardness for NE computation in bimatrix games. In addition, we
get:
* An equivalence between 2D-Linear-FIXP and PPAD, improving a result by
Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD.
* NE computation in a bimatrix game with convex set of Nash equilibria is as
hard as solving a simple stochastic game.
* Computing a symmetric NE of a symmetric bimatrix game with rank is
PPAD-hard.
* Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP)
piecewise-linear function is PPAD-hard.
The status of rank- games remains unresolved
Avoiding unnecessary demerging and remerging of multiâcommodity integer flows
Resource flows may merge and demerge at a network node. Sometimes several demerged flows may be immediately merged again, but in different combinations compared to before they were demerged. However, the demerging is unnecessary in the first place if the total resources at each of the network nodes involved remains unchanged. We describe this situation as âunnecessary demerging and remerging (UDR)â of flows, which would incur unnecessary operations and costs in practice. Multiâcommodity integer flows in particular will be considered in this paper. This deficiency could be theoretically overcome by means of fixedâcharge variables, but the practicality of this approach is restricted by the difficulty in solving the corresponding integer linear program (ILP). Moreover, in a problem where the objective function has many cost elements, it would be helpful if such operational costs are optimized implicitly. This paper presents a heuristic branching method within an ILP solver for removing UDR without the use of fixedâcharge variables. We use the concept of âflow potentialsâ (different from âflow residuesâ for maxâflows) guided by which underutilized arcs are heuristically banned, thus reducing occurrences of UDR. Flow connection bigraphs and flow connection groups (FCGs) are introduced. We prove that if certain conditions are met, fully utilizing an arc will guarantee an improvement within an FCG. Moreover, a location subâmodel is given when the former cannot guarantee an improvement. More importantly, the heuristic approach can significantly enhance the full fixedâcharge model by warmâstarting. Computational experiments based on realâworld instances have shown the usefulness of the proposed methods
Flux networks in metabolic graphs
A metabolic model can be represented as bipartite graph comprising linked
reaction and metabolite nodes. Here it is shown how a network of conserved
fluxes can be assigned to the edges of such a graph by combining the reaction
fluxes with a conserved metabolite property such as molecular weight. A similar
flux network can be constructed by combining the primal and dual solutions to
the linear programming problem that typically arises in constraint-based
modelling. Such constructions may help with the visualisation of flux
distributions in complex metabolic networks. The analysis also explains the
strong correlation observed between metabolite shadow prices (the dual linear
programming variables) and conserved metabolite properties. The methods were
applied to recent metabolic models for Escherichia coli, Saccharomyces
cerevisiae, and Methanosarcina barkeri. Detailed results are reported for E.
coli; similar results were found for the other organisms.Comment: 9 pages, 4 figures, RevTeX 4.0, supplementary data available (excel
Nonclassicality of pure two-qutrit entangled states
We report an exhaustive numerical analysis of violations of local realism by
two qutrits in all possible pure entangled states. In Bell type experiments we
allow any pairs of local unitary U(3) transformations to define the measurement
bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally
entangled qubits, lead to the most noise-robust violations of local realism.
The phenomenon seems to be even more pronounced for four and five dimensional
systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio
Subtropical Real Root Finding
We describe a new incomplete but terminating method for real root finding for
large multivariate polynomials. We take an abstract view of the polynomial as
the set of exponent vectors associated with sign information on the
coefficients. Then we employ linear programming to heuristically find roots.
There is a specialized variant for roots with exclusively positive coordinates,
which is of considerable interest for applications in chemistry and systems
biology. An implementation of our method combining the computer algebra system
Reduce with the linear programming solver Gurobi has been successfully applied
to input data originating from established mathematical models used in these
areas. We have solved several hundred problems with up to more than 800000
monomials in up to 10 variables with degrees up to 12. Our method has failed
due to its incompleteness in less than 8 percent of the cases
Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism
It is shown that the dual to the linear programming problem that arises in
constraint-based models of metabolism can be given a thermodynamic
interpretation in which the shadow prices are chemical potential analogues, and
the objective is to minimise free energy consumption given a free energy drain
corresponding to growth. The interpretation is distinct from conventional
non-equilibrium thermodynamics, although it does satisfy a minimum entropy
production principle. It can be used to motivate extensions of constraint-based
modelling, for example to microbial ecosystems.Comment: 4 pages, 2 figures, 1 table, RevTeX 4, final accepted versio
On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms
We give a lower bound on the iteration complexity of a natural class of
Lagrangean-relaxation algorithms for approximately solving packing/covering
linear programs. We show that, given an input with random 0/1-constraints
on variables, with high probability, any such algorithm requires
iterations to compute a
-approximate solution, where is the width of the input.
The bound is tight for a range of the parameters .
The algorithms in the class include Dantzig-Wolfe decomposition, Benders'
decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for
lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988]
and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy
argument to show an analogous lower bound on the support size of
-approximate mixed strategies for random two-player zero-sum
0/1-matrix games
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Deep neural networks have emerged as a widely used and effective means for
tackling complex, real-world problems. However, a major obstacle in applying
them to safety-critical systems is the great difficulty in providing formal
guarantees about their behavior. We present a novel, scalable, and efficient
technique for verifying properties of deep neural networks (or providing
counter-examples). The technique is based on the simplex method, extended to
handle the non-convex Rectified Linear Unit (ReLU) activation function, which
is a crucial ingredient in many modern neural networks. The verification
procedure tackles neural networks as a whole, without making any simplifying
assumptions. We evaluated our technique on a prototype deep neural network
implementation of the next-generation airborne collision avoidance system for
unmanned aircraft (ACAS Xu). Results show that our technique can successfully
prove properties of networks that are an order of magnitude larger than the
largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that
appeared at CAV 201
- âŠ