41 research outputs found

    Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina

    Full text link
    [EN] We evaluate the seedling resistance to charcoal rot caused by Macrophomina phaseolina in ninety-seven Cucumis melo accessions, from different geographical origins and five F1 generations, derived from crosses of five accessions selected for their resistance. Artificial inoculations with the toothpick method, previously reported to be useful for predicting shoot resistance, were performed, and plants were scored using a scale of disease severity. The average disease severity was calculated for each accession and was used to cluster the accession in five reaction classes. The screening revealed that sources of natural resistance to this fungus are limited. However, seedlings of seven accessions of different botanic groups displayed a resistant response to the stem inoculation, one cantaloup from Israel, one conomon accession from Korea, two wild agrestis and one acidulus from Africa, and two dudaim accessions from Middle East. The response of the F1 progenies varied from susceptibility to high resistance, the latter in progenies from the two agrestis wild types. These results suggest differences in the genetic basis of the resistance in the different selected sources. The resistant accessions are suggested to be screened under field conditions to confirm the level of resistance at adult plant stage and under stressful conditions.This work has been partially funded by the Project No 294/13 of the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior CAPES (Brazil). M. M. Q. Ambrosio and A. C. A. Dantas thank CAPES for their research fellowships. B.Pico thanks the Programa Hispano-Brasileno de Cooperacion Universitaria HBP2012-008 and PHBP14/00021 and to the MINECO project AGL2014-53398-C2-2-R.Ambrosio, MM.; Dantas, AC.; Martinez Perez, EM.; Medeiros, AC.; Sousa Nunes, GHD.; PicĂł Sirvent, MB. (2015). Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica. 206(2):287-300. https://doi.org/10.1007/s10681-015-1452-xS2873002062Aegerter BJ, Gordon TR, Davis RM (2000) Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis 84:224–230Almeida AMR, Abdelnoor RV, Arias CAA, Carvalho VP, Jacoud Filho DS, Marin SRR, Benato LC, Pinto MC, Carvalho CGP (2003) Genotypic diversity among Brazilian isolates of Macrophomina phaseolina revealed by RAPD. Fitopatol Bras 28:279–285Almeida AMRA, Seixas CDSS, Farias JRBF, Oliveira MCN, Franchini JC, Debiasi H, Costa JM, GaudĂȘncio CA (2014) Macrophomina phaseolina em soja. Embrapa Soja, Londrina, p 30pAmbrĂłsio MMQ, Bueno CJ, Padovani CR, Souza NL (2009) SobrevivĂȘncia de fungos fitopatogĂȘnicos habitantes do solo, em microcosmo, simulando solarização com prĂ©via incorporação de materiais orgĂąnicos. Summa Phytopathol 35(1):20–25Andrade DEGT, Michereff SJ, Biondi CM, Nascimento CWA, Sales R Jr (2005) FrequĂȘncia de fungos associados ao colapso do meloeiro e relação com caracterĂ­sticas fĂ­sicas, quĂ­micas e microbiolĂłgicas dos solos. Summa Phytopathol 31(4):327–333Bedendo IP (2011) PodridĂ”es de raiz e de colo. In: Amorin L, Rezende JAM, Bergamin Filho A (eds) Manual de Fitopatologia: PrincĂ­pios e conceitos. AgronĂŽmica Ceres, SĂŁo Paulo, pp 443–448Bramel-Cox PJ, Stein IS, Rodgers DM, Claflin LE (1988) Inheritance of resistance to Macrophomina phaseolina (Tassi) Goid. and Fusarium moniliforme Sheldom in Sorghum. Crop Sci 28(1):37–40Bruton BD, Miller E (1997) Occurrence of vine decline diseases of melons in Honduras. Plant Dis 81(6):696Bruton BD, Jeger MD, Reuveni R (1987) Macrophomina phaseolina infection and vine decline in cantaloupe in relation to planting date, soil environment, and maturation. Plant Dis 71(3):259–263Burger Y, Katzir N, Tzuri G, Portnoy V, Saar U, Shriber S, Perl-Treves R, Cohen R (2003) Variation in the response of melon genotypes to Fusarium oxysporum f. sp. melonis race 1 determined by inoculation tests and molecular markers. Plant Pathol 52:204–211Chamorro M, Miranda L, DomĂ­nguez P, Medina JJ, Soria C, Romero F, LĂłpez Aranda JM, De los Santos B (2015) Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Prot 67:279–286Cohen R (1993) A leaf disk assay for detection of resistance of melons to Sphaerotheca fuliginea race 1. Plant Dis 77(5):513–517Cohen R, Katzir N, Schreiber S, Greenberg R (1996) Occurrence of Shaerotheca fuliginea Race 3 on Cucurbits in Israel. Plant Dis 80:334Cohen R, Omari N, Porat A, Edelstein M (2012) Management of Macrophomina wilt in melons using grafting or fungicide soil application: pathological, horticultural and economical aspects. Crop Prot 35:58–63Cohen R, Tyutyunik J, Fallik E, Oka Y, Tadmor Y, Edelstein M (2014) Phytopathological evaluation of exotic watermelon germplasm as a basic for rootstock breeding. Sci Hortic 165:203–210Dantas AMM, AmbrĂłsio MMQ, Nascimento SRC, Senhor RF, CĂ©zar MA, Lima JSS (2013) Incorporation of plant materials in the control of root pathogens in mushmelon. Revista Agro@ambiente on-line 7(3):338–344Davis RM, Turini TA, Aegerter BJ, Stapleton JJ (2009) Cucurbits charcoal rot, pathogen: Macrophomina phaseolina. UC IPM online. http://www.totoagriculture.org/PDFs/PlantDiseasesPests/1026.pdf . Accessed 25 Feb 2015Dias RCS, PicĂł B, Espinos A, Nuez F (2004) Resistance to melĂłn vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breed 123:66–72Diourte M, Starr JL, Jegger MJ, Stack JP, Rosenow DT (1995) Charcoal rot (Macrophomina phaseolina) resistance and the effect of water stress on disease development in Sorghum. Plant Pathol 44:196–202Esteras C, Pascual B, Nuez F, PicĂł MB (2009) Use of ecotilling to identify natural allelic variants of melon candidate genes involved in fuit ripening. 8th Plant Genomics European Meeting (Plant GEM 8) Istambul, 213Esteras C, Formisano G, Roig C, DĂ­az A, Blanca J, Garcia-Mas J, GĂłmez-GuillamĂłn ML, LĂłpez-SesĂ© AI, LĂĄzaro A, Monforte AJ, PicĂł B (2013) SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet 126(5):1285–1303. doi: 10.1007/s00122-013-2053-5Fang X, Phillips D, Li H, Sivasithamparama K, Barbettia MJ (2011) Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Sci Hortic 131(22):39–48Food and Agriculture Organization (2014) Faostat. http://faostat.fao.org/site/567/default.aspx#ancor . Accessed 11 Nov 2011GarcĂ­a-JimĂ©nez J, MartĂ­nez-Ferrer G, Armengol J, Velazquez MT, Orts M, JuĂĄrez M, Ortega A, JordĂĄ MC, Alfaro A (1993) Agentes asociados al colapso del melĂłn en distintas zonas españolas. Bol San Veg Plagas 19:401–423Grezes-Besset B, Lucante N, Kelechian V, Dargent R, Muller H (1996) Evaluation of castor bean resistance to sclerotial wilt disease caused by Macrophomina phaseolina. Plant Dis 80(8):842–846Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90Iglesias A, PicĂł B, Nuez F (2000) A temporal genetic analysis of disease resistance genes resistance to melon vine decline derived from Cucumis melo var. agrestis. Plant Breed 119:329–334Islam MS, Haque MS, Islam MM, Emdad EM, Halim A, Hossen QMM, Hossain MZ, Ahmed B, Rahim S, Rahman MS, Alam MM, Hou S, Wan X, Saito JÁ, Alam M (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomic 13(493):1–16Jacob CJ, Krarup C, DĂ­az A, Latorre BA (2013) A severe outbreak of charcoal rot in cantaloupe melon caused by Macrophomina phaseolina in Chile. Plant Dis 97(1):141Kaur S, Dhillon GS, Brar SK, Vallad GE, Chand R, Chauhan VB (2012) Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Crit Rev Microbiol 38(1):136–151Keeling A (1982) Seedling test for resistance to soybean stem canker caused by diaporthe phaseolorum var. caulivora. Phytopathology 72(7):807–809Khan SN (2007) Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopath 5(2):111–118Khan SH, Shuaib M (2007) Identification of sources of resistance in Mung bean (Vigna radiata L.) against Charcoal Rot Macrophomina phaseolina (Tassi) Goid. Afr Crop Sci 8:2101–2102Krikun J, Orion D, Nachmias A, Reuveni R (1982) The role of soilborne pathogens under conditions of intensive agricultura. Phytoparasitica 10(4):247–258Mahmoudi SB, Ghashghaie S (2013) Reaction of sugar beet S1 lines and cultivars to different isolates of Macrophomina phaseolina and Rhizoctonia solani AG-2-2IIIB. Euphytica 190:39–445. doi: 10.1007/s10681-012-0832-8Mertely J, Seijo T, Peres N (2005) First report of Macrophomina phaseolina causing a crown rot of strawberry in Florida. Plant Dis 89(4):434Mughogho LK, Pande S (1984) Charcoal Rot of Sorghum. In: Mughogho LK, Rosenberg G (eds) Sorghum root and stalk rots, a critical review: proceedings of the consultative group discussion on research needs and strategies for control of sorghum root and stalk rot diseases. Icrisat, Bellagio, pp 11–24Nischwitz C, Olsen M, Rasmussen S (2004) Effect of irrigation type on inoculum density of Macrophomina phaseolina in melon fields in Arizona. J Phytopathol 152(3):133–137Noling JW, Becker JO (1994) The challenge of research and extension to define and implement alternatives to methyl bromide. J Nematol 26(4S):573–586Pitrat M (2008) Melon. In: Prohens J, Nuez F (eds) Handbook of plant breeding. Springer, New York, pp 283–315Purkayastha S, Kaur B, Dilbaghi N, Chaudhury A (2006) Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR-based molecular markers. Plant Pathol 55:106–116. doi: 10.1111/j.1365-3059.2005.01317.xRadwan O, Rouhana LV, Hartman GL, Korban SS (2014) Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean. Plant Mol Biol Report 32(3):617–629Ravf BA, Ahmad I (1998) Studies on correlation of seed infection to field incidence of Alternaria alternate and Macrophomina phaseolina in Sunflower. 13th Iranian Plant Protection Congress-Karaj, p 113Roustaee A, Reyhan MK, Jafari M (2011) Study of interaction between salinity and charcoal rot diseases of melon (Macrophomina phaseolina) in Semnan and Garmsar. Desert 16(2):175–218Salari M, Panjehkeh N, Nasirpoor Z, Abkhoo J (2012) Reaction of melĂłn (Cucumis melo L.) cultivars to soil-borne plant pathogenic fungi in Iran. Afr J Biotecnol 11(87):15324–15329Sales R Jr, Oliveira OF, Medeiros EV, GuimarĂŁes IM, Correia KC, Michereff SJ (2012) Ervas daninhas como hospedeiras alternativas de patĂłgenos causadores do colapso do meloeiro. Rev CiĂȘnc Agron 43(1):195–198Sas Institute (2000) Sas/Stat userÂŽs guide: statistics, version 8.01, v. 2, 4. SAS Institute, Inc, CaryScandiani MM, Ruberti DS, Giorda LM, Pioli RN, Luque AG, Bottai H, Ivancovich JJ, Aoki T, OÂŽDonnell K (2011) Comparison of inoculation methods for characterizing relative aggressiveness of two soybean sudden-death syndrome pathogens, Fusarium virguliforme and F. tucumaniae. Trop Plant Pathol 36(3):133–140Scott AJ, Knott MA (1974) Cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3):507–512Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci 107:14269–14273Sharmishtha P, Bhavneet K, Neeraj D, Ashok C (2006) Evaluation of cluster bean genotypes for resistance to charcoal rot caused by Macrophomina phaseolina using different host inoculation methods pages. J Crop Improv 15(1):67–79Shekhar M, Sharma RC, Singh L, Dutta R (2006) Morphological and pathogenic variability of Macrophomina phaseolina (Tassi.) Goid Incitant of charcoal rot of maize in India. Indian Phytopath 59(3):294–298Stapleton JJ (2000) Soil solarization in various agricultural production systems. Crop Prot 19:837–841Twizeyimana M, Hill CB, Pawlowski M, Paul C, Hartman GL (2012) A cut-stem inoculation technique to evaluate soybean for resistance to Macrophomina phaseolina. Plant Dis 96(8):1210–1215Watson A, Napier T (2009) Disease of cucurbit vegetables. Primefact 832:1–6Wolukau JN, Zhou XH, Li Y, Zhang Y, Chen J (2007) Resistance to gummy stem blight in melon (Cucumis melo L.) germplasm and inheritance of resistance from plant introductions 157076, 420145, and 323498. HortScience 42(2):215–221Wrather JA, Anderson TR, Arsyad DM, Tan Y, Ploper LD, Porta-Puglia A, Ram HH, Yorinori JT (2001) Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Can J Plant Pathol 23:115–12

    Expanding the knowledge about Leishmania species in wild mammals and dogs in the Brazilian savannah

    Get PDF
    Background: Wild, synanthropic and domestic mammals act as hosts and/or reservoirs of several Leishmania spp. Studies on possible reservoirs of Leishmania in different areas are fundamental to understand host-parasite interactions and develop strategies for the surveillance and control of leishmaniasis. In the present study, we evaluated the Leishmania spp. occurrence in mammals in two conservation units and their surroundings in Brasília, Federal District (FD), Brazil. Methods: Small mammals were captured in Brasília National Park (BNP) and Contagem Biological Reserve (CBR) and dogs were sampled in residential areas in their vicinity. Skin and blood samples were evaluated by PCR using different molecular markers (D7 24Sα rRNA and rDNA ITS1). Leishmania species were identified by sequencing of PCR products. Dog blood samples were subjected to the rapid immunochromatographic test (DPP) for detection of anti-Leishmania infantum antibodies. Results: 179 wild mammals were studied and 20.1% had Leishmania DNA successfully detected in at least one sample. Six mammal species were considered infected: Clyomys laticeps, Necromys lasiurus, Nectomys rattus, Rhipidomys macrurus, Didelphis albiventris and Gracilinanus agilis. No significant difference, comparing the proportion of individuals with Leishmania spp., was observed between the sampled areas and wild mammal species. Most of the positive samples were collected from the rodent N. lasiurus, infected by L. amazonensis or L. braziliensis. Moreover, infections by Trypanosoma spp. were detected in N. lasiurus and G. agilis. All 19 dog samples were positive by DPP; however, only three (15.8%) were confirmed by PCR assays. DNA sequences of ITS1 dog amplicons showed 100% identity with L. infantum sequence. Conclusions: The results suggest the participation of six species of wild mammals in the enzootic transmission of Leishmania spp. in FD. This is the first report of L. amazonensis in N. lasiurus

    Randomised short-term trial of high-span versus low-span APAP for treating sleep apnoea

    Get PDF
    PURPOSE: Auto-titrating continuous positive airway pressure (APAP) devices were developed to improve treatment efficacy and compliance in patients with obstructive sleep apnoea syndrome (OSAS). Since there are insufficient data on the optimal pressure range setting, we aimed to compare the adherence, efficacy and tolerability of treatment with high-span versus low-span APAP. METHODS: Seventy-six newly diagnosed OSAS patients fulfilling the treatment criteria were randomised to receive high-span (HS, range 4-15cmH2O, n?=?38) or low-span (LS, range 8-12cmH2O, n?=?38) APAP. Patients were assessed at 1 and 3 months. RESULTS: Median Epworth sleepiness scale (ESS) was 13 (IQR, 6-16) and median apnoea-hypopnoea index (AHI) was 35.9 (IQR, 27.6-56.3). There were no significant differences in baseline demographic and clinical characteristics between groups. Overall, no significant differences were found at the first month assessment. After 3 months of therapy, we found again no differences in residual AHI or ESS. However, the group HS proved less adherent than group LS, respectively, with median 87 % (IQR, 60.5-97.5) versus 94 % (IQR, 80.0-98.3) of the nights using =4 h (P?=?0.014) and mean (±SD) usage 5.7?±?1.6 versus 6.4?±?1.2 h/night (P?=?0.049). The group HS reported more frequently nasal congestion, excessive oronasal dryness and nocturnal awakenings of at least moderate intensity, the latter with statistical significance (P?=?0.005). CONCLUSIONS: Both pressure ranges appear to be equally effective to correct AHI and to improve symptoms. Though, patients with high-span APAP were less compliant to treatment, raising issues about the tolerability of wide pressure range settings of these devices.T Pinto has received financial support from Linde and Vitalaire (Healthcare Providers) for attending symposia and honoraria for speaking at symposia from Philips. After the conclusion of the study, JC Winck has started working in a global position for Linde. The remaining authors declare that they have no conflict of interest

    Alternative Oxidase Mediates Pathogen Resistance in Paracoccidioides brasiliensis Infection

    Get PDF
    Thermally dimorphic pathogenic fungi are responsible for potentially life-threatening diseases of immunocompetent and immunocompromised individuals. These microorganisms grow as conidia-producing mycelia in the environment, which when inhaled by the host convert to the pathogenic yeast form at 37°C. During adaptation and growth, fungi interact with host immune cells and must cope with defense mechanisms such as imposed-oxidative stress (e.g., reactive oxygen species; ROS). Alternative oxidase (AOX) is an enzyme recently implicated in the reduction of ROS production by the mitochondria when triggered by external stimuli, such as temperature and ROS. During this work we have evaluated the relevance of AOX during infection with Paracoccidioides brasiliensis, the etiological agent of one of the most prevalent mycoses in Latin America, paracoccidioidomycosis. We show that PbAOX gene expression is stimulated after interaction with alveolar macrophages or in the presence of H2O2 and is essential for survival against fungicidal activity of both the immune cells and the ROS compound. Moreover, decreasing PbAOX gene expression in P. brasiliensis led to increased survival of infected mice. Altogether, our data supports a relevant role for AOX in the virulence of P. brasiliensis

    Proteomic Analysis Reveals That Iron Availability Alters the Metabolic Status of the Pathogenic Fungus Paracoccidioides brasiliensis

    Get PDF
    Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM). The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D) gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways
    corecore