208 research outputs found

    A New Domain Decomposition Parallel Algorithm for Convection–Diffusion Problem

    Get PDF
    Basing on overlapping domain decomposition, we construct a new parallel algorithm combined the method of subspace correction with least-squares procedure for solving time-dependent convection–diffusion problem. This algorithm is fully parallel. We analyze the convergence of approximate solution, and study the dependence of the convergent rate on the spacial mesh size, time increment, iteration number and sub-domains overlapping degree. Both theoretical analysis and numerical results suggest that only one or two iterations are needed to reach to given accuracy at each time step

    Super-resolution of Ray-tracing Channel Simulation via Attention Mechanism based Deep Learning Model

    Full text link
    As an emerging approach, deep learning plays an increasingly influential role in channel modeling. Traditional ray tracing (RT) methods of channel modeling tend to be inefficient and expensive. In this paper, we present a super-resolution (SR) model for channel characteristics. Residual connection and attention mechanism are applied to this convolutional neural network (CNN) model. Experiments prove that the proposed model can reduce the noise interference generated in the SR process and solve the problem of low efficiency of RT. The mean absolute error of our channel SR model on the PL achieves the effect of 2.82 dB with scale factor 2, the same accuracy as RT took only 52\% of the time in theory. Compared with vision transformer (ViT), the proposed model also demonstrates less running time and computing cost in SR of channel characteristics

    Diving Deep into the Preimage Security of AES-like Hashing

    Get PDF
    Since the seminal works by Sasaki and Aoki, Meet-in-the-Middle (MITM) attacks are recognized as an effective technique for preimage and collision attacks on hash functions. At Eurocrypt 2021, Bao et al. automated MITM attacks on AES-like hashing and improved upon the best manual result. The attack framework has been furnished by subsequent works, yet far from complete. This paper elucidates three key contributions dedicated in further generalizing the idea of MITM and refining the automatic model on AES-like hashing. (1) We introduce S-box linearization to MITM pseudo-preimage attacks on AES-like hashing. The technique suits perfectly with superposition states to preserve information after S-box with an affordable cost. (2) We propose distributed initial structures, an extension on the original concept of initial states, that selects initial degrees of freedom in a more versatile manner to enlarge the search space. (3) We exploit the structural similarities between encryption and key schedule in constructions (e.g. Whirlpool and Streebog) to model propagations more accurately and avoid repeated costs. Weaponed with these innovative techniques, we further empower the MITM framework and improve the attack results on AES-like designs for preimage and collision. We obtain the first preimage attacks on 10-round AES-192, 10-round Rijndael-192/256, and 7.75-round Whirlpool, reduced time and/or memory complexities for preimage attacks on 5-, 6-round Whirlpool and 7.5-, 8.5-round Streebog, as well as improved collision attacks on 6- and 6.5-round Whirlpool

    On the Security Margin of TinyJAMBU with Refined Differential and Linear Cryptanalysis

    Get PDF
    International audienceThis paper presents the first third-party security analysis of TinyJAMBU, which is one of 32 second-round candidates in NIST’s lightweight cryptography standardization process. TinyJAMBU adopts an NLFSR based keyed-permutation that computes only a single NAND gate as a non-linear component per round. The designers evaluated the minimum number of active AND gates, however such a counting method neglects the dependency between multiple AND gates. There also exist previous works considering such dependencies with stricter models, however those are known to be too slow. In this paper, we present a new model that provides a good balance of efficiency and accuracy by only taking into account the first-order correlation of AND gates that frequently occurs in TinyJAMBU. With the refined model, we show a 338-round differential with probability 2^(−62.68) that leads to a forgery attack breaking 64-bit security. This implies that the security margin of TinyJAMBU with respect to the number of unattacked rounds is approximately 12%. We also show a differential on full 384 rounds with probability 2^(−70.64), thus the security margin of full rounds with respect to the data complexity, namely the gap between the claimed security bits and the attack complexity, is less than 8 bits. Our attacks also point out structural weaknesses of the mode that essentially come from the minimal state size to be lightweight

    Manipulating refractive index, homogeneity and spectroscopy of Yb3+^{3+}-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers

    Get PDF
    Output power scaling of single mode large mode area (LMA) photonic crystal fiber (PCF) amplifiers urgently requires the low refractive index of Yb³⁺-doped silica glasses whilst maintaining high optical homogeneity. In this paper, we report on a promising alternative Yb³⁺/Al³⁺/F¯/P⁵⁺-co-doped silica core-glass (YAFP), which is prepared by modified sol-gel method developed by our group and highly suitable for fabricating high power LMA PCF amplifiers. By controlling the doping combinations of Al³⁺/F¯/P⁵⁺ in Yb³⁺- doped silica glass,it not only ensures low refractive index (RI) but also maintains the excellent optical homogeneity and spectroscopic properties of Yb³⁺. The spectroscopic properties of Yb³⁺ ions have not deteriorated by the co-doping of F¯ and P⁵⁺ in YAFP glass compared with that of Yb³⁺/Al³⁺ co-doped silica glass. A large-size (⌀5 mm × 90 mm) YAFP silica-core glass rod with low average RI difference of 2.6 × 10¯⁴ (with respect to pure silica glass), and low radial and axial RI fluctuations of ~2 × 10¯⁴, was prepared. A LMA PCF with 50 μm core diameter was obtained by stack-capillary-draw techniques using YAFP core glass. Its core NA is 0.027. An average amplified power of 97 W peaking at 1030 nm and light-light efficiency of 54% are achieved from a 6.5 m long PCF in the pulse amplification laser experiment. Meanwhile, quasi-single-mode transmission is obtained with laser beam quality factor M² of 1.4

    Analysis of gut microbiota and immune-related genes during sea cucumber (<em>Apostichopus japonicus</em>) response to dietary supplementation with <em>Codonopsis pilosula</em>

    Get PDF
    The gut microbiota composition of sea cucumber (Apostichopus japonicas) was investigated using high-throughput sequencing techniques. The mRNA expression of complement component 3 and lysozyme genes was evaluated using quantitative fluorescence PCR. Sea cucumbers were fed with a basal diet (control group) and an experimental diet supplemented with Codonopsis pilosula (experimental group) for 30 days. The results showed that the alpha diversity of the gut microbiota was changed in different indices, including Chao1, the abundance-based coverage estimator, the Shannon index, and Good's coverage. Dietary C. pilosula promoted the proliferation of the Flavobacteriaceae family of the Proteobacteria phylum and reduced the relative abundance of the Verrucomicrobiaceae family of the Verrucomicrobia phylum. We concluded that dietary C. pilosula supplementation could alter the network interactions among different microbial functional groups by changing the ecological network's microbial community composition and biological evolution. A positive effect on A. japonicus immune responses in the gut was seen via increasing the mRNA expression of the complement component 3 and lysozyme genes. It seems to happen via modulating the balance in gut microbiota

    Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery

    Get PDF
    The rectangle attack has shown to be a very powerful form of cryptanalysis against block ciphers. Given a rectangle distinguisher, one expects to mount key recovery attacks as efficiently as possible. In the literature, there have been four algorithms for rectangle key recovery attacks. However, their performance vary from case to case. Besides, numerous are the applications where the attacks lack optimality. In this paper, we investigate the rectangle key recovery in depth and propose a unified and generic key recovery algorithm, which supports any possible attacking parameters. Notably, it not only covers the four previous rectangle key recovery algorithms, but also unveils five types of new attacks which were missed previously. Along with the new key recovery algorithm, we propose a framework for automatically finding the best attacking parameters, with which the time complexity of the rectangle attack will be minimized using the new algorithm. To demonstrate the efficiency of the new key recovery algorithm, we apply it to Serpent, CRAFT, SKINNY and Deoxys-BC-256 based on existing distinguishers and obtain a series of improved rectangle attacks

    Genetic diversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines from Ningxia, China

    Get PDF
    The organoleptic profile and quality of wine are affected by the presence of different non-Saccharomyces species and strains. Therefore, the identification and characterization of non-Saccharomyces yeasts are the first step to understand their function, and to develop a better strain selection program for winemaking. This study investigated the biodiversity of non-Saccharomyces yeasts associated with spontaneous fermentation of Cabernet Sauvignon wines from five sub-regions (Shi Zuishan, Yinchuan, Yu Quanying, Qing Tongxia and Hong Sibu) in Ningxia, China. Yeast species were identified by sequencing the 26S rRNA D1/D2 region, and strains at the subspecies level were discriminated using tandem repeat-tRNA (TRtRNA) PCR analysis. A total of 524 yeast colonies were isolated, and 19 non-Saccharomyces yeast species belonging to 10 genera were identified, including Aureobasidium pullulans, Cryptococcus albidus, Cryptococcus sp., C. flavescens, C. terrestris, C. magnus, Cystofilobasidium ferigula, Candida zemplinina, Filobasidium magnum, Filobasidium sp., F. elegans, Hanseniaspora uvarum, Metschnikowia pimensis, M. pulcherrima, Naganishia albida, Pichia kluyveri, P. kudriavzevii, Rhodotorula glutinis and R. graminis. Hanseniaspora uvarum, C. zemplinina, and M. pulcherrima were the three most dominated species, while other non-Saccharomyces species were only present in the early stage of spontaneous fermentations at different levels. Further, for the yeast discrimination at strain level, 34 profiles were obtained by amplification with primer pairs TtRNASC/5CAG, while 40 profiles were obtained with primer pairs TtRNASC/ISSR-MB. This study explored the diversity of non-Saccharomyces species in Ningxia, China, and made an important contribution of genetic resources for further strain development
    corecore