175 research outputs found

    A Ballistic Graphene Cooper Pair Splitter

    Get PDF
    We report an experimental study of Cooper pair splitting in an encapsulated graphene based multiterminal junction in the ballistic transport regime. Our device consists of two transverse junctions, namely the superconductor/graphene/superconductor and the normal metal/graphene/normal metal junctions. In this case, the electronic transport through one junction can be tuned by an applied bias along the other. We observe clear signatures of Cooper pair splitting in the local as well as nonlocal electronic transport measurements. Our experimental data can be very well described by using a modified Octavio-Tinkham-Blonder-Klapwijk model and a three-terminal beam splitter model

    Berry phase in superconducting multiterminal quantum dots

    Get PDF
    We report on the study of the non-trivial Berry phase in superconducting multiterminal quantum dots biased at commensurate voltages. Starting with the time-periodic Bogoliubov-de Gennes equations, we obtain a tight binding model in the Floquet space, and we solve these equations in the semiclassical limit. We observe that the parameter space defined by the contact transparencies and quartet phase splits into two components with a non-trivial Berry phase. We use the Bohr-Sommerfeld quantization to calculate the Berry phase. We find that if the quantum dot level sits at zero energy, then the Berry phase takes the values φB=0\varphi_B=0 or φB=π\varphi_B=\pi. We demonstrate that this non-trivial Berry phase can be observed by tunneling spectroscopy in the Floquet spectra. Consequently, the Floquet-Wannier-Stark ladder spectra of superconducting multiterminal quantum dots are shifted by half-a-period if φB=π\varphi_B=\pi. Our numerical calculations based on Keldysh Green's functions show that this Berry phase spectral shift can be observed from the quantum dot tunneling density of states.Comment: 15 pages, 7 figures. Supplemental Material as ancillary file (3 pages, 5 figures), manuscript in final for

    Contact resistance in graphene-based devices

    Full text link
    We report a systematic study of the contact resistance present at the interface between a metal (Ti) and graphene layers of different, known thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate that the contact resistance is quantitatively the same for single-, bi-, and tri-layer graphene (800±200Ωμm\sim800 \pm 200 \Omega \mu m), and is in all cases independent of gate voltage and temperature. We argue that the observed behavior is due to charge transfer from the metal, causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point

    Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling

    Get PDF
    We have studied electronic conductivity and shot noise of bilayer graphene (BLG) sheets at high bias voltages and low bath temperature T0=4.2T_0=4.2 K. As a function of bias, we find initially an increase of the differential conductivity, which we attribute to self-heating. At higher bias, the conductivity saturates and even decreases due to backscattering from optical phonons. The electron-phonon interactions are also responsible for the decay of the Fano factor at bias voltages V>0.1V>0.1 V. The high bias electronic temperature has been calculated from shot noise measurements, and it goes up to 1200\sim1200 K at V=0.75V=0.75 V. Using the theoretical temperature dependence of BLG conductivity, we extract an effective electron-optical phonon scattering time τeop\tau_{e-op}. In a 230 nm long BLG sample of mobility μ=3600\mu=3600 cm2^2V1^{-1}s1^{-1}, we find that τeop\tau_{e-op} decreases with increasing voltage and is close to the charged impurity scattering time τimp=60\tau_{imp}=60 fs at V=0.6V=0.6 V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version 1. The low bias part is discussed in arXiv:1102.065

    Ballistic transport in induced one-dimensional hole systems

    Full text link
    We have fabricated and studied a ballistic one-dimensional p-type quantum wire using an undoped AlGaAs/GaAs heterostructure. The absence of modulation doping eliminates remote ionized impurity scattering and allows high mobilities to be achieved over a wide range of hole densities, and in particular, at very low densities where carrier-carrier interactions are strongest. The device exhibits clear quantized conductance plateaus with highly stable gate characteristics. These devices provide opportunities for studying spin-orbit coupling and interaction effects in mesoscopic hole systems in the strong interaction regime where rs > 10.Comment: 6 pages, 4 figures (accepted to Applied Physics Letters

    Graphene microwave transistors on sapphire substrates

    Full text link
    We have developed metal-oxide graphene field-effect transistors (MOGFETs) on sapphire substrates working at microwave frequencies. For monolayers, we obtain a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power gain maximum frequency of about ~ 3 GHz for this specific sample. Given the strongly reduced charge noise for nanostructures on sapphire, the high stability and high performance of this material at low temperature, our MOGFETs on sapphire are well suited for a cryogenic broadband low-noise amplifier

    Single-walled carbon nanotube weak links in Kondo regime with zero-field splitting

    Get PDF
    We have investigated proximity-induced supercurrents in single-walled carbon nanotubes in the Kondo regime and compared them with supercurrents obtained on the same tube with Fabry-Pérot resonances. Our data display a wide distribution of Kondo temperatures TK=1–14 K, and the measured critical current ICM vs TK displays two distinct branches; these branches, distinguished by zero-field splitting of the normal-state Kondo conductance peak, differ by an order of magnitude at large values of TK. Evidence for renormalization of Andreev levels in Kondo regime is also found.Peer reviewe

    Tailoring supercurrent confinement in graphene bilayer weak links

    Get PDF
    The Josephson effect is one of the most studied macroscopic quantum phenomena in condensed matter physics and has been an essential part of the quantum technologies development over the last decades. It is already used in many applications such as magnetometry, metrology, quantum computing, detectors or electronic refrigeration. However, developing devices in which the induced superconductivity can be monitored, both spatially and in its magnitude, remains a serious challenge. In this work, we have used local gates to control confinement, amplitude and density profile of the supercurrent induced in one-dimensional nanoscale constrictions, defined in bilayer graphene-hexagonal boron nitride van der Waals heterostructures. The combination of resistance gate maps, out-of-equilibrium transport, magnetic interferometry measurements, analytical and numerical modelling enables us to explore highly tunable superconducting weak links. Our study opens the path way to design more complex superconducting circuits based on this principle such as electronic interferometers or transition-edge sensors

    Shot Noise in Ballistic Graphene

    Get PDF
    We have investigated shot noise in graphene field effect devices in the temperature range of 4.2--30 K at low frequency (ff = 600--850 MHz). We find that for our graphene samples with large width over length ratio W/LW/L, the Fano factor F\mathfrak{F} reaches a maximum F\mathfrak{F} \sim 1/3 at the Dirac point and that it decreases strongly with increasing charge density. For smaller W/LW/L, the Fano factor at Dirac point is significantly lower. Our results are in good agreement with the theory describing that transport at the Dirac point in clean graphene arises from evanescent electronic states.Comment: Phys. Rev. Lett. 100, 196802 (2008
    corecore