11 research outputs found

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≤mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟨p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≤mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟨p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region
    corecore