80 research outputs found

    Positive selection of hearing loss candidate genes,based on multiple microarray platforms experiments and data mining

    Get PDF
    2006/2007Secondo le stime del World Health Organization, le perdite uditive colpiscono circa 278 milioni di persone in tutto il mondo. Approssimativamente 1 bambino ogni 100, nasce con problemi d’udito. Nonostante l’identificazione negli ultimi 10 anni di più di 100 loci genetici associati a fenotipi di perdita uditiva, non tutti i corrispettivi geni causativi sono stati identificati. Normalmente utilizzando un approccio sperimentale di linkage tradizionale non è sempre possibile identificare un intervallo genomico sufficientemente corto da essere analizzato per la ricerca di mutazioni. Il lavoro presentato in questa tesi ha lo scopo di selezionare un set limitato di geni potenzialmente coinvolti nelle perdite uditive non sindromiche, utilizzando la combinazione di un approccio biologico e bioinformatico. Il punto di partenza dell’analisi è stato il gene GJB2. Il gene GJB2 codifica la Connessina 26, proteina coinvolta nella formazione delle gap junction tra le cellule, ma anche implicata in più del 50% dei casi di perdite uditive non sindromiche. Per questa ragione è stato suggerito un ruolo chiave nella biologia dell’orecchio, che va oltre la sua funzione di proteina canale. In questa tesi è stato esaminato il profilo d’espressione genica di cellule HeLa transfettate con la forma naturale e con delle forme mutate della Connessina26. Le analisi dei dati hanno identificato numerosi geni differenzialmente espressi e si è quindi deciso di passare ad un approccio informatico per ridurne il numero. Questa analisi ha permesso di identificare 19 geni in 11 loci privi di geni causativi selezionandoli in base alla loro espressione rispetto librerie di cDNA prodotte da orecchio. Sono stati quindi identificati i geni omologhi in topo per 5 dei 19 geni, con lo scopo di verificare la loro rilevanza con la perdita uditiva. Per tutti questi 5 geni è stata confermata l’espressione nell’organo di corti in topo e con Real-time RT-PCR nelle linee cellulari transfettate impiegate negli esperimenti di microarray. Il progetto proseguirà ora con lo screening di mutazioni nei geni candidati in famiglie di pazienti selezionate.According to WHO estimates hearing impairment affects 278 million people worldwide. Approximately 1/1000 children are born with a significant hearing impairment. To date approximately 100 genetic loci involved in deafness have been described. Despite the fact that such a large number of genetic locations associated with deafness phenotypes are known, not all the genes involved have been identified yet. Using a traditional linkage approach, however, it is not always possible to map a locus to intervals short enough to be amenable for costly mutation analysis. So far no more than 40 deafness genes have been identified and these encode very heterogeneous proteins. The work presented in this thesis aims to identify a limited set of candidate genes with high potential to be involved in Non-Syndromic Hearing Loss using a combination of biological and bioinformatics approaches. The starting point of the analysis was the GJB2 gene. The GJB2 gene encodes for the gap junction protein Connexin26 and is responsible for more than half of the non-syndromic hearing loss cases. For this reason it has been proposed that this protein might play a wider role in the biology of the ear, beyond its mere channel function. I therefore performed whole genome expression profiles of HeLa cells transfected with the wild type form of the GJB2 gene and compared them to that of cells transfected with mutant forms of this gene to shed light on its function. Initially this experiment yielded a bewildering number of differentially expressed genes (4,984). Thus I devised an in silico strategy to narrow down this number, focusing on genes which were positionally linked to specific non-syndromic hereditary hearing loss conditions, as well as found within human ear cDNA libraries, thus potentially causative of the disease. This further analysis yielded 19 genes within 11 loci. In order to assess their relevance to hearing loss, the mouse homologs of these genes were identified for 5 of them and indeed they were all found to be expressed in the mouse organ of corti. These five genes were also validated by Real-time RT-PCR in the human cell line used for the microarray experiments.197

    Hepatitis C virus NS5A targets the nucleosome assembly protein NAP1L1 to control the innate cellular response

    Get PDF
    Hepatitis C virus (HCV) is a single-stranded positive-sense RNA hepatotropic virus. Despite cellular defenses, HCV is able to replicate in hepatocytes and to establish a chronic infection that could lead to severe complications and hepatocellular carcinoma. An important player in subverting the host response to HCV infection is the viral non-structural protein NS5A that, in addition to its role in replication and assembly, targets several pathways involved in the cellular response to viral infection. Several unbiased screens identified the nucleosome-assembly protein 1-like 1 (NAP1L1) as an interaction partner of HCV NS5A. Here we confirm this interaction and map it to the C-terminus of NS5A of both genotype 1 and 2. NS5A sequesters NAP1L1 in the cytoplasm blocking its nuclear translocation. However, only NS5A from genotype 2 HCV, but not from genotype 1, targets NAP1L1 for proteosomal-mediated degradation. NAP1L1 is a nuclear chaperone involved in chromatin remodeling and we demonstrate the NAP1L1-dependent regulation of specific pathways involved in cellular responses to viral infection and cell survival. Among those we show that lack of NAP1L1 leads to a decrease of RELA protein levels and a strong defect of IRF3 TBK1/IKKϵ-mediated phosphorylation leading to inefficient RIG-I and TLR3 responses. Hence, HCV is able to modulate the host cell environment by targeting NAP1L1 through NS5A

    Serum from humans on long ‐ term calorie restriction enhances stress resistance in cell culture

    Get PDF
    Calorie restriction (CR) without malnutrition is the most robust intervention to slow aging and extend healthy lifespan in experimental model organisms. Several metabolic and molecular adaptations have been hypothesized to play a role in mediating the anti-aging effects of CR, including enhanced stress resistance, reduced oxidative stress and several neuroendocrine modifications. However, little is known about the independent effect of circulating factors in modulating key molecular pathways. In this study, we used sera collected from individuals practicing long-term CR and from age- and sex-matched individuals on a typical US diet to culture human primary fibroblasts and assess the effects on gene expression and stress resistance. We show that treatment of cultured cells with CR sera caused increased expression of stress-response genes and enhanced tolerance to oxidants. Cells cultured in serum from CR individuals showed a 30% increase in resistance to H(2)O(2) damage. Consistently, SOD2 and GPX1 mRNA, two key endogenous antioxidant enzymes, were increased by 2 and 2.5 folds respectively in cells cultured with CR sera. These cellular and molecular adaptations mirror some of the key effects of CR in animals, and further suggest that circulating factors contribute to the CR-mediated protection against oxidative stress and stress-response in humans as well

    Investigation of rumen metagenome in Italian Simmental and Italian Holstein cows using a whole-genome shotgun sequencing technique

    Get PDF
    The study aimed at investigating the rumen microbiome composition and functional activity in mid lactating cows of Italian Holstein (IH) and Italian Simmental (IS) breeds. Eight IH and eight IS pluriparous cows with days in milking (DIM) ranging from 90 to 180 were selected and rumen contents were sampled with oesophageal tube. Rumen metagenome was analysed using a whole shotgun sequencing. Data were analysed for taxonomic classification and microbial genes. The relative abundance of Archaea, the Archaea to Bacteria ratio and the Archaea to Eukarya ratio were higher (p < .05) in IS than IH cows. The comparison between IH and IS underlined differences for the abundances of Bacteria, being Bactroidaceae, Bacteroides, Prevotellaceae and Prevotella lower (p < .05) in IS than in IH cows. The IS cows showed higher abundances of Euryarchaeota (p < .05), Methanosphera (p < .01) and Methanothermobacter (p < .05) than IH cows. The annotation of sequences to KEGG revealed that 170 genes were differentially abundant between IS and IH cows and among these, 20% were involved in protein biosynthesis, 8.8% in one-carbon metabolism, as methyl coenzyme M reductase associated protein and of six isoforms of methyl coenzyme M reductase. The present results suggest a genetic link between breed and microbiome, although this interaction can be influenced by several biological factors. Considering that there are still a low number of whole genome shotgun sequencing analysis of rumen communities, these data can provide further information to scientific community

    Developmental dyslexia and its complex genetic puzzle

    Get PDF
    Genetics suggest that DD is an additive or interactive effect of multiple genetic and environmental risk factors. In 2014 an interdisciplinary collaboration between the University of Trieste and the Institute for Maternal and Child Health IRCCS \u201cBurlo Garofolo\u201d of Trieste started, with the aim of performing a genetic study in Italian families with dyslexia

    Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultraconserved elements (UCEs) are highly constrained elements of mammalian genomes, whose functional role has not been completely elucidated yet. Previous studies have shown that some of them act as enhancers in mouse, while some others are expressed in both normal and cancer-derived human tissues. Only one UCE element so far was shown to present these two functions concomitantly, as had been observed in other isolated instances of single, non ultraconserved enhancer elements.</p> <p>Results</p> <p>We used a custom microarray to assess the levels of UCE transcription during mouse development and integrated these data with published microarray and next-generation sequencing datasets as well as with newly produced PCR validation experiments. We show that a large fraction of non-exonic UCEs is transcribed across all developmental stages examined from only one DNA strand. Although the nature of these transcripts remains a mistery, our meta-analysis of RNA-Seq datasets indicates that they are unlikely to be short RNAs and that some of them might encode nuclear transcripts. In the majority of cases this function overlaps with the already established enhancer function of these elements during mouse development. Utilizing several next-generation sequencing datasets, we were further able to show that the level of expression observed in non-exonic UCEs is significantly higher than in random regions of the genome and that this is also seen in other regions which act as enhancers.</p> <p>Conclusion</p> <p>Our data shows that the concurrent presence of enhancer and transcript function in non-exonic UCE elements is more widespread than previously shown. Moreover through our own experiments as well as the use of next-generation sequencing datasets, we were able to show that the RNAs encoded by non-exonic UCEs are likely to be long RNAs transcribed from only one DNA strand.</p

    Regulatory Role of microRNA of Milk Exosomes in Mastitis of Dairy Cows

    Get PDF
    The aim of this study was to compare the cargos of miRNA in exosomes isolated from the milk of healthy (H) cows, cows at risk of mastitis (ARM), and cows with subclinical mastitis (SCM). Based on the number of somatic cells and the percentage of polymorphonuclear cells, 10 cows were assigned to group H, 11 to group ARM, and 11 to group SCM. After isolating exosomes in milk by isoelectric precipitation and ultracentrifugation, the extracted RNA was sequenced to 50 bp long single reads, and these were mapped against Btau_5.0.1. The resulting 225 miRNAs were uploaded to the miRNet suite, and target genes for Bos taurus were identified based on the miRTarBase and miRanda databases. The list of differentially expressed target genes resulting from the comparisons of the three groups was enriched using the Function Explorer of the Kyoto Encyclopedia of Genes and Genomes. A total of 38, 18, and 12 miRNAs were differentially expressed (DE, p < 0.05) in the comparisons of H vs. ARM, ARM vs. SCM, and H vs. SCM, respectively. Only 1 DE miRNA was shared among the three groups (bta-mir-221), 1 DE miRNA in the H vs. SCM comparison, 9 DE miRNAs in the ARM vs. SCM comparison, and 21 DE miRNAs in the H vs. ARM comparison. A comparison of the enriched pathways of target genes from the H, SCM, and ARM samples showed that 19 pathways were differentially expressed in the three groups, while 56 were expressed in the H vs. SCM comparison and 57 in the H vs. ARM comparison. Analyzing milk exosome miRNA cargos can be considered as a promising approach to study the complex molecular machinery set in motion in response to mastitis in dairy cows

    In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes.

    Get PDF
    Endophytes live inside plants and are often beneficial. Kosakonia is a novel bacterial genus that includes many diazotrophic plant-associated isolates. Plant–bacteria studies on two rice endophytic Kosakonia beneficial strains were performed, including comparative genomics, secretome profiling, in planta tests, and a field release trial. The strains are efficient rhizoplane and root endosphere colonizers and localized in the root cortex. Secretomics revealed 144 putative secreted proteins, including type VI secretory system (T6SS) proteins. A Kosakonia T6SS genomic knock-out mutant showed a significant decrease in rhizoplane and endosphere colonization ability. A field trial using rice seed inoculated with Kosakonia spp. showed no effect on plant growth promotion upon nitrogen stress and microbiome studies revealed that Kosakonia spp. were significantly more present in the inoculated rice. Comparative genomics indicated that several protein domains were enriched in plant-associated Kosakonia spp. This study highlights that Kosakonia is an important, recently classified genus involved in plant–bacteria interaction

    Mitochondrial Metabolism and EV Cargo of Endothelial Cells Is Affected in Presence of EVs Derived from MSCs on Which HIF Is Activated

    Get PDF
    Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis

    Viral priming of cell intrinsic innate antiviral signaling by the unfolded protein response

    Get PDF
    The innate response to a pathogen is critical in determining the outcome of the infection. However, the interplay of different cellular responses that are activated following viral infection and their contribution to innate antiviral signalling has not been clearly established. This work shows that flaviviruses, including Dengue, Zika, West Nile and Tick-borne encephalitis viruses, activate the unfolded protein response before transcription of interferon regulatory factor 3 induced genes. Infection in conditions of unfolded protein response priming leads to early activation of innate antiviral responses and cell intrinsic inhibition of viral replication, which is interferon regulatory factor 3 dependent. These results demonstrate that the unfolded protein response is not only a physiological reaction of the cell to viral infection, but also synergizes with pattern recognition sensing to mount a potent antiviral response
    corecore