640 research outputs found

    Predictive Maintenance Model Based on Anomaly Detection in Induction Motors: A Machine Learning Approach Using Real-Time IoT Data

    Full text link
    With the support of Internet of Things (IoT) devices, it is possible to acquire data from degradation phenomena and design data-driven models to perform anomaly detection in industrial equipment. This approach not only identifies potential anomalies but can also serve as a first step toward building predictive maintenance policies. In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines. This work evaluates a combination of pre-processing techniques and machine learning (ML) models with a low computational cost. We use a combination of pre-processing techniques such as Fast Fourier Transform (FFT), Wavelet Transform (WT), and binning, which are well-known approaches for extracting features from raw data. We also aim to guarantee an optimal balance between multiple conflicting parameters, such as anomaly detection rate, false positive rate, and inference speed of the solution. To this end, multiobjective optimization and analysis are performed on the evaluated models. Pareto-optimal solutions are presented to select which models have the best results regarding classification metrics and computational effort. Differently from most works in this field that use publicly available datasets to validate their models, we propose an end-to-end solution combining low-cost and readily available IoT sensors. The approach is validated by acquiring a custom dataset from induction motors. Also, we fuse vibration, temperature, and noise data from these sensors as the input to the proposed ML model. Therefore, we aim to propose a methodology general enough to be applied in different industrial contexts in the future

    Anomaly Detection in Industrial Machinery using IoT Devices and Machine Learning: a Systematic Mapping

    Full text link
    Anomaly detection is critical in the smart industry for preventing equipment failure, reducing downtime, and improving safety. Internet of Things (IoT) has enabled the collection of large volumes of data from industrial machinery, providing a rich source of information for Anomaly Detection. However, the volume and complexity of data generated by the Internet of Things ecosystems make it difficult for humans to detect anomalies manually. Machine learning (ML) algorithms can automate anomaly detection in industrial machinery by analyzing generated data. Besides, each technique has specific strengths and weaknesses based on the data nature and its corresponding systems. However, the current systematic mapping studies on Anomaly Detection primarily focus on addressing network and cybersecurity-related problems, with limited attention given to the industrial sector. Additionally, these studies do not cover the challenges involved in using ML for Anomaly Detection in industrial machinery within the context of the IoT ecosystems. This paper presents a systematic mapping study on Anomaly Detection for industrial machinery using IoT devices and ML algorithms to address this gap. The study comprehensively evaluates 84 relevant studies spanning from 2016 to 2023, providing an extensive review of Anomaly Detection research. Our findings identify the most commonly used algorithms, preprocessing techniques, and sensor types. Additionally, this review identifies application areas and points to future challenges and research opportunities

    Antimicrobial and Photoantimicrobial Activities of Chitosan/CNPPV Nanocomposites

    Full text link
    Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan's structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria. Keywords: photoantimicrobial activity; blue-light irradiation; chitosan; CNPPV; nanocomposites; E. coli; S. aureu

    Triagem Inteligente: O Uso da Internet das Coisas na Classificação dos Riscos nas Emergências

    Get PDF
    Este artigo tem como objetivo apresentar a automação do processo de triagem de pacientes utilizando o atuador Arduino. O processo de triagem determina o nível de risco do paciente e sua execução pode tornar-se desnecessariamente complexa, sendo que, aproximadamente, 80% dos pacientes em serviços de emergência não necessitam de atendimento urgente. Portanto, a automatização deste processo pode provar-se bastante benéfica: os dados do paciente são analisados em tempo real, provendo um resultado seguro e em alta velocidade, garantindo prioridade a pacientes em risco e reduzindo o tempo de admissão dele

    Triagem Inteligente: O Uso da Internet das Coisas na Classificação dos Riscos nas Emergências

    Get PDF
    Este artigo tem como objetivo apresentar a automação do processo de triagem de pacientes utilizando o atuador Arduino. O processo de triagem determina o nível de risco do paciente e sua execução pode tornar-se desnecessariamente complexa, sendo que, aproximadamente, 80% dos pacientes em serviços de emergência não necessitam de atendimento urgente. Portanto, a automatização deste processo pode provar-se bastante benéfica: os dados do paciente são analisados em tempo real, provendo um resultado seguro e em alta velocidade, garantindo prioridade a pacientes em risco e reduzindo o tempo de admissão dele

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore