13 research outputs found

    Families of vector-like deformed relativistic quantum phase spaces, twists and symmetries

    Get PDF
    Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. Method for general construction of star product is presented. Corresponding twist, expressed in terms of phase space coordinates, in Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincar\'e-Weyl generators or gl(n)\mathfrak{gl}(n) generators, are constructed and R-matrix is discussed. Classification of linear realizations leading to vector-like deformed phase spaces is given. There are 3 types of spaces: i)i) commutative spaces, ii)ii) κ\kappa-Minkowski spaces and iii)iii) κ\kappa-Snyder spaces. Corresponding star products are i)i) associative and commutative (but non-local), ii)ii) associative and non-commutative and iii)iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.Comment: 20 pages, version accepted for publication in EPJ

    Twist for Snyder space

    Get PDF
    We construct the twist operator for the Snyder space. Our starting point is a non-associative star product related to a Hermitian realisation of the noncommutative coordinates originally introduced by Snyder. The corresponding coproduct of momenta is non-coassociative. The twist is constructed using a general definition of the star product in terms of a bi-differential operator in the Hopf algebroid approach. The result is given by a closed analytical expression. We prove that this twist reproduces the correct coproducts of the momenta and the Lorentz generators. The twisted Poincar\'{e} symmetry is described by a non-associative Hopf algebra, while the twisted Lorentz symmetry is described by the undeformed Hopf algebra. This new twist might be important in the construction of different types of field theories on Snyder space.Comment: 15 pages, references added, matches published versio

    Toward the classification of differential calculi on κ-Minkowski space and related field theories

    Get PDF
    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincar\'e Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications

    Remarks on simple interpolation between Jordanian twists

    Get PDF
    In this paper, we propose a simple generalization of the locally r-symmetric Jordanian twist, resulting in the one-parameter family of Jordanian twists. All the proposed twists differ by the coboundary twists and produce the same Jordanian deformation of the corresponding Lie algebra. They all provide the κ\kappa-Minkowski spacetime commutation relations. Constructions from noncommutative coordinates to the star product and coproduct, and from the star product to the coproduct and the twist are presented. The corresponding twist in the Hopf algebroid approach is given. Our results are presented symbolically by a diagram relating all of the possible constructions.Comment: 12 page

    Noncommutative spaces and Poincaré symmetry

    No full text
    We present a framework which unifies a large class of noncommutative spacetimes that can be described in terms of a deformed Heisenberg algebra. The commutation relations between spacetime coordinates are up to linear order in the coordinates, with structure constants depending on the momenta plus terms depending only on the momenta. The possible implementations of the action of Lorentz transformations on these deformed phase spaces are considered, together with the consistency requirements they introduce. It is found that Lorentz transformations in general act nontrivially on tensor products of momenta. In particular the Lorentz group element which acts on the left and on the right of a composition of two momenta is different, and depends on the momenta involved in the process. We conclude with two representative examples, which illustrate the mentioned effect
    corecore