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Abstract We construct the twist operator for the Snyder
space. Our starting point is a non-associative star prod-
uct related to a Hermitian realisation of the noncommuta-
tive coordinates originally introduced by Snyder. The cor-
responding coproduct of momenta is non-coassociative. The
twist is constructed using a general definition of the star prod-
uct in terms of a bi-differential operator in the Hopf algebroid
approach. The result is given by a closed analytical expres-
sion. We prove that this twist reproduces the correct coprod-
ucts of the momenta and the Lorentz generators. The twisted
Poincaré symmetry is described by a non-associative Hopf
algebra, while the twisted Lorentz symmetry is described
by the undeformed Hopf algebra. This new twist might be
important in the construction of different types of field theo-
ries on Snyder space.

1 Introduction

Since the beginning, the research of a quantum field theory
brought with it the problem of ultraviolet divergences and
it was already Heisenberg who proposed the idea of non-
commutative spaces as a possible solution [1]. The idea was
formulated mathematically for the first time in 1947 by Sny-
der [2].

In his paper, Snyder has shown that the introduction of a
minimal unit of length necessarily leads to a noncommutative
algebra of spacetime coordinates, but also that the assump-
tion of Lorentz covariance does not impose a requirement for
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the spacetime to be continuous. The noncommutative coor-
dinates can be realised as Lie algebra generators and being
represented as operators that encode rotations, their spec-
trum is discrete, but Lorentz invariance is preserved. The
momentum space can be identified with the de Sitter space
∼ SO(4, 1)/SO(3, 1).

Because of the success of the renormalisation theory, the
idea of noncommutative spaces was forgotten for many years,
until it was rediscovered by mathematicians [3] and appeared
in the context of string theory [4]. When noncommutative
geometry resurfaced as an important field of research [5–
8], new models were introduced. These include e.g. the most
simple type of a noncommutative space, known as the Moyal
plane [6–8], and the κ-Minkowski spacetime [9,10], a Lie
algebra-type deformation of ordinary phase space, which is
especially interesting because of its connection to doubly
special relativity [11]. The κ-Minkowski spacetime is also
a noncommutative geometry where the momentum space is
the de Sitter space, obtained from the Iwasawa decomposi-
tion of SO(4, 1) [12,13] and that has deformed commuta-
tion relations between the momenta and the noncommuta-
tive coordinates, which leads to a noncommutative addition
of momenta. It is a model that has been extensively studied
in different directions, e.g., in defining star products [14–18],
the differential calculus [19], the conserved charges [20,21],
generalising the description of the κ-Poincaré-Hopf algebra
[22], or classifying the differential calculi and considering
the related field theories [23].

Despite the renewed interest in noncommutative geom-
etry, the emergence of new models and their study using
the formalism of Hopf algebras [12,24], less attention was
given to Snyder’s original proposal. Some of the work done
includes the consideration of different field theories on the
Snyder spacetime [25] and its study in connection to quan-
tum gravity phenomenology [26]. Its classical and quantum
aspects have been studied from a phenomenological point
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of view, outside of the noncommutative geometry formalism
[27–36]. The model was also considered in a series of papers
[37–40], and the star product, coproduct and antipodes of its
Hopf algebra were calculated.

Using a spacetime picture based on the concept of reali-
sations of a noncommutative geometry, the authors of [38]
constructed the co-algebraic sector corresponding to any
realisation of the Snyder model, and also defined a non-
ambiguous self interacting scalar field theory for the Sny-
der spacetime, computing explicitly the first order correction
terms of the corresponding Lagrangian. In [41,42], the prob-
lem was considered from a geometrical point of view, with
equivalent results to those of [38]. Two types of scalar field
theory were constructed. The first one, based on the natural
momenta addition, uncovers a non-associative deformation
of the Poincaré symmetries, and the second considers Snyder
spacetime as a subspace of a larger noncommutative space.
The restriction of the extra-dimensional scalar field theory
was also discussed.

More recently, the construction of a free field theory was
considered in [43], both for a hermitian realisation of the Sny-
der spacetime, showing that the free theory is equivalent to
the commuatative one, and for a generalisation of the model,
up to the first order in the deformation parameter. In [44],
a truncated form of the nonassociative and noncommutative
Snyder φ4 field theory was defined and quantized using the
functional method in momentum space. Different nonasso-
ciative star/cross product geometries, as well as the related
field theories, have also been considered in [45–50].

In this paper we construct the non-associative star prod-
uct related to a Hermitian realisation of the noncommuta-
tive coordinates originally introduced by Snyder [2]. This
construction is performed using the method proposed in
[38,51,55]. Using a general definition of the star product,
defined by a bi-differential twist operator, we calculate the
twist in the Hopf algebroid approach to all orders in the defor-
mation parameter. The result is given by a closed analytical
expression. This twist does not satisfy the cocycle condi-
tion, but we prove that it reproduces the star product and the
coproducts of the momenta and the Lorentz generators. Also,
it generates a quasi-bialgebra and quasi-bialgebroid structure
related to the Snyder space. This twist might be important in
the construction of different types of field theories on the
Snyder space.

In Sect. 2, the construction of the star product related to
the original Snyder realisation is presented. In Sect. 3, the
corresponding twist operator is constructed. It is proved that
it reproduces the coproducts of the momenta and the Lorentz
generators. In Sect. 4, the outlook and discussion are given.
Two appendices, related to Sects. 2 and 3 respectively, which
include important details of the proofs are added.

2 From Snyder algebra to star product

In its original formulation [2], the Snyder algebra is gener-
ated by noncommutative coordinates x̂μ, momenta pμ and
Lorentz generators Mμν that satisfy the following commuta-
tion relations

[x̂μ, x̂ν] = iβMμν, [pμ, x̂ν]
= −i(ημν + βpμ pν), [pμ, pν] = 0,

[Mμν, Mρσ ] = i(ημρMνσ − ημσ Mνρ + ηνρMμσ − ηνσ Mμρ),

[Mμν, x̂λ] = i(ημλ x̂ν − ηνλ x̂μ), [Mμν, pλ]
= i(ημλ pν − ηνλ pμ), (1)

where β is a constant of the order 1/M2
Pl , MPl being the

Planck mass and the metric tensor ημν = diag(−1, 1, . . . , 1)

has signature (1, n − 1). The Lorentz generators satisfy the
standard relations and their commutation relations with the
noncommutative coordinates and the momenta are also unde-
formed, i.e. vector like, hence Lorentz invariance is pre-
served, but the commutation relations of the momenta and
the noncommutative coordinates are deformed.

It is possible to find a realisation of the Snyder algebra
in terms of xμ and pμ, the generators of the undeformed
Heisenberg algebra [37,38,51], which satisfy

[xμ, xν] = 0, [pμ, pν] = 0, [pμ, xν] = −iημν. (2)

Moreover, we concentrate on a hermitian realisation given
by

x̂μ = xμ + β

2
(Dpμ + pμD) = xμ + β

(
Dpμ − i

2
pμ

)
,

Mμν = xμ pν − xν pμ, pμ = −i
∂

∂xμ
, (3)

where we define the dilatation operator D as

D = 1

2
(x · p + p · x) = x · p − in

2
, (4)

and x · p denotes the scalar product, x · p = xα pα . Hence

x̂μ = xμ + β

(
x · ppμ − i

n + 1

2
pμ

)
. (5)

Note that M†
μν = Mμν , D† = D and (x̂μ)† = x̂μ.

For the undeformed Heisenberg algebra, H = AT , where
A is the enveloping algebra generated by xμ and T is gener-
ated by pμ, we define the action � on A , � : H ⊗ A → A,
by

xμ� f (x) = xμ f (x), pμ� f (x) = −i
∂ f (x)

∂xμ
, f (x) ∈ A.

(6)
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It can be shown [43,52–55] that for realisations of non-
commutative coordinates which can be written in the form
x̂μ = xαϕα

μ(p) + χμ(p), one has

eik·x̂ � 1 = eiK (k)·x+ig(k), (7)

and

eik·x̂ � eiq·x = eiP(k,q)·x+iQ(k,q), (8)

where Eqs. (7) and (8) are the defining relations for the func-
tions K (k), g(k), P(k, q) and Q(k, q). It is easily seen that

Pμ(k, 0) = Kμ(k), Pμ(0, q) = qμ. (9)

Writing the inverse of Eq. (7),

eik·x = eiK
−1(k)·x̂−ig(K−1(k)) � 1, (10)

it follows that for any function f (x) ∈ A that can be Fourier
transformed, we can define a function f̂ (x̂) ∈ H in the fol-
lowing way

f (x) =
∫

dnk f̃ (k)eik·x ,

f̂ (x̂) =
∫

dnk f̃ (k) eiK
−1(k)·x̂−ig(K−1(k)), (11)

and f̂ will have the property

f̂ � 1 = f (x). (12)

We then define the star product, � : A ⊗ A → A, of two
functions f (x), g(x) ∈ A by

f (x) � g(x) = f̂ ĝ � 1 = f̂ � g(x). (13)

From (10), it also follows that the star product of two plane
waves is given by

eik·x � eiq·x = eiK
−1(k)·x̂−ig(K−1(k)) � eiq·x

= eiP(K−1(k),q)·x+iQ(K−1(k),q)−ig(K−1(k)). (14)

Noting that g(k) = Q(k, 0), and defining the functions
Dμ(k, q) and G(k, q) by

Dμ(k, q) = Pμ(K−1(k), q), (15)

G(k, q) = Q(K−1(k), q) − Q(K−1(k), 0), (16)

one finds that this star product can be written as

eik·x � eiq·x = eiD(k,q)·x+iG(k,q). (17)

The star product of two functions f (x), g(x) ∈ A that
can be Fourier transformed is then given by

f (x) � g(x) =
∫

dnkdnq f̃ g̃eiD(k,q)·x+iG(k,q). (18)

For the Hermitain realisation given by (3), it can be shown
(for more details, see the appendix) thatDμ(k, q) andG(k, q)

are given by

Dμ(k, q) = 1

1 − βk · q

[(
1 − βk · q

1 + √
1 + βk2

)
kμ

+
√

1 + βk2qμ

]
, (19)

G(k, q) = i
n + 1

2
ln(1 − βk · q). (20)

Furthermore, we define the coproduct, � : T → T ⊗ T
as

�pμ = Dμ(p ⊗ 1, 1 ⊗ p), (21)

from where one obtains the known expression for the coprod-
uct for the so-called Snyder realisation [38]

�pμ = 1

1 − βpα ⊗ pα

(
pμ ⊗ 1 − β

1 + √
1 + βp2

pμ pα

⊗ pα +
√

1 + βp2 ⊗ pμ

)
. (22)

The addition of momenta which corresponds to the coprod-
uct (22) can be found in [41,42]. The antipode S(p) is unde-
formed S(pμ) = −pμ. The star product for the Snyder space
(18) is non-associative, while the corresponding coproduct
(22) is non-coassociative.

3 Twist from star product

The star product f � g can also be written using the twist
operator F

f (x)�g(x) = m
(
F−1(� ⊗ �)( f (x) ⊗ g(x))

)
, f, g ∈ A,

(23)

wherem : A⊗H → H is the multiplication map. From (18),
within the Hopf algebroid setting, we can extract the form
for F−1, the inverse of the twist operator [53,54,56–60]

F−1 =: exp
[
i(1 ⊗ xα)(� − �0)pα + iG(p ⊗ 1, 1 ⊗ p)

] :
=: exp

[
i(1 ⊗ xα)(� − �0)pα

] : eiG(p⊗1,1⊗p), (24)
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where �0 pμ = pμ ⊗ 1 + 1 ⊗ pμ and : : denotes nor-
mal ordering in which the coordinates xα stand on the
left of the momenta pα . Twist F−1 is determined by (24)
up to the right ideal I0 of H, which has the property
m (I0(� ⊗ �)( f ⊗ g)) = 0.

Another way for obtaining the twist is using the pertur-
bative approach introduced in [56]. The coproduct (22) is
expanded with respect to the deformation parameter β as
�pμ = �∞

k=0�k pμ, with �k pμ ∝ βk . For χ(βp2) = 0
(where the realisation of the noncommutative coordinates is
written as x̂μ = xαϕ α

μ (βp2) + βpμχ(βp2), see appendix),
the corresponding twist is F0 = e f , where f = �∞

k=1 fk ,
fk ∝ βk , and we choose fk ∈ T ⊗ L(x)T , where L(x) is
linear span of xμ. After writing down the most general ansatz
for the fk , one finds the unknown coefficients by requiring
that the twist reproduces the coproduct (22) order by order,
in the following way

�pμ = F0�0 pμF−1
0 . (25)

After calculating F0, we find that F−1, corresponding to
χ(βp2) = −i n+1

2 , is given by

F−1 = F−1
0

(
1

1 ⊗ 1 − βpα ⊗ pα

) n+1
2

= exp

{
i

(
1

2
p2 ⊗ x · p + 1

2
pα pβ ⊗ xα pβ + pα ⊗ x · p pα

)

×
(

ln(1 + βp2)

p2 ⊗ 1

)}(
1

1 ⊗ 1 − βpα ⊗ pα

) n+1
2

. (26)

This expression is identical to the one in (24), which can be
proved order by order.

Note that, in the Hopf algebroid approach, we have another
expression related to the twist operator

F−1 = e−i pα⊗xα

eip
W
γ ⊗(xγ +βx ·ppγ ) eiG(p⊗1,1⊗p), (27)

where pWμ is the momentum corresponding to the Weyl order-
ing, which is given by pWμ = K−1

μ (p). The inverse K−1
μ of

the function Kμ(p), defined in (7), can be calculated from
the equation

K (K−1(p))μ = pμ. (28)

For the realisation (3), the function Kμ(p) is given by Kμ =
pμ

tan
√

βp2√
βp2

[38], from where it follows that K−1
μ is given by

pWμ = K−1
μ (p) = pμ

arctan
√

βp2√
βp2

. (29)

Generally, the following identity holds [58]

: ei(1⊗xα)(�−�0)pα : = e−i pα⊗xα

eiK
−1
γ (p)⊗xβϕβγ (p). (30)

Having the form of the twist operator (26), it is important
to check the consistency condition (25). Since eiG(p⊗1,1⊗p)

commutes with �0 pμ, it is enough to calculateF0�0 pμF−1
0

F0�0 pμF−1
0 = pμ ⊗ 1 +

∞∑
n=0

∞∑
k=0

βn−k (−1)k+n

k!
×An,k(p

2(n−k) ⊗ 1) adkf1(1 ⊗ pμ), (31)

where

An,k =
∑

r1+···+rk=n

1

r1r2 . . . rk
(32)

and

adkf1(1 ⊗ pμ)=βk

(
k∑

l=0

ck−l,l(pμ(p2)k−l ⊗ 1)(pα ⊗ pα)l

+
k∑

l=0

dk−l,l((p
2)k−l ⊗ pμ)(pα ⊗ pα)l

)
. (33)

The coefficients ck−l,l and dk−l,l satisfy the recursive rela-
tions [51]

ck−l+1,l = lck−l,l + c(l − 1)ck−l+1,l−1 + 1

2
dk−l+1,l−1,

(34)

dk−l+1,l =
(
l + 1

2

)
dk−l,l + ldk−l+1,l−1, (35)

with c0,0 = 0 and d0,0 = 1. The solutions of the recursive
relations are

ck−l,l =
l−1∑
s=0

(−1)s
(
l − 1

s

)
(l − s)k − dk−l+1,l−1, (36)

dk−l,l =
l∑

s=0

(−1)s
(
l

s

) (
l − s + 1

2

)k

. (37)

The coefficients ck−l,l and dk−l,l satisfy the following iden-
tities, see appendix

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,kck−l,l x
n−l = 1 + x − √

1 + x

x
, (38)

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,kdk−l,l =
( 1

2
n − l

)
, ∀n, l. (39)

Inserting the expressions for ck−l,l and dk−l,l into (31), and
using the identities (38) and (39) leads exactly to (22).

Another check of consistency is to use the twist to calcu-
late �Mμν . One gets that

�Mμν = F�0MμνF−1 = �0Mμν, (40)

where �0Mμν = Mμν ⊗ 1 + 1 ⊗ Mμν . The coproduct of
the Lorentz generators turns out to be the primitive one, since
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[F ,�0Mμν] = 0. The antipode S(Mμν) is also undeformed,
S(Mμν) = −Mμν .

Because of the non-coassociativity of the coproduct, the
twist for the Snyder space does not satisfy the cocycle con-
dition.

Finally, from the star product (23), we define

f̂ (x, p) = m
(F−1(� ⊗ 1)( f (x) ⊗ 1)

)
, f̂ (x, p)�1 = f (x),

(41)

and Â =
{
f̂ (x, p)

}
⊂ H. The space Â is not an algebra. The

non-associative algebra A�, where the product of functions
is given by (13), (18), is defined by A� = Â�1. Particularly,

x̂μ(x, p) = m
(
F−1(� ⊗ 1)(xμ ⊗ 1)

)

= xμ + β

(
x · ppμ − i

n + 1

2
pμ

)
, (42)

which gives back the Snyder realisation from which we have
started and this proves the consistency of our approach.

Using the flipped twist operator F21, we define dual non-
commutative coordinates ŷμ(x, p)

ŷμ(x, p) = m
(
F−1

21 (� ⊗ 1)(xμ ⊗ 1)
)

=
(
xμ + x · ppμ

√
1 + βp2 − 1

p2

)

×
√

1 + βp2 − i
n + 1

2
βpμ. (43)

They satisfy a Snyder type algebra [51]

[ŷμ, ŷν] = iMμν

(
1 − √

1 + βp2

p2

)√
1 + βp2, (44)

and ŷμ � f (x) = f (x) � xμ. Note that [x̂μ, ŷν] �= 0, as a
consequence of the non-associativity of the star product. The
relation between ŷμ and x̂μ is given by

ŷμ = (
x̂α − λα(p)

)
O−1

αμ(p), (45)

from which it follows

xμ � f (x) = (
Oμα(p) � f (x)

)
� xα + λμ(p) � f (x). (46)

4 Outlook and discussion

In this paper we have constructed the non-associative star
product related to a Hermitian realisation of noncommu-
tative coordinates, originally introduced by Snyder. Using
a general definition of the star product, defined by a bi-
differential twist operator, we have calculated the twist in

the Hopf algebroid approach up to all orders in the defor-
mation parameter. The result is given by a closed analytical
expression. This twist does not satisfy the cocycle condi-
tion because of the non-coassociativity of the correspond-
ing coproduct. However, we have proved that it reproduces
the star product and the coproducts of the momenta and
the Lorentz generators, as well as the Snyder realisation
of the noncommutative coordinates. Even though the cor-
responding coproduct is non-coassociative, it satisfies the
3-cocycle condition (see Appendix C). Twisted coalgebraic
structures related to the Snyder space and Poincaré symme-
try are quasi-bialgebroid and quasi-bialgebra respectively.
Generalizations which include the antipode are under inves-
tigation.

We point out that the associativity of star products gen-
erally reflects the associativity of compositions of quan-
tum mechanical operators. However, applications of the
deformation quantization procedure to string theory some-
times require deformation in the direction of a quasi-Poisson
bracket, which does not satisfy the Jacobi identity and hence
leads to non-associativity. It was found that for string end-
points attached to a Dirichlet brane in a non-constant back-
ground B-field, the star products describing the correla-
tion functions are both noncommutative and non-associative.
Similarly, it was found that closed strings in flat non-
geometric R-flux backgrounds M also probe non-associative
geometry. Another example of non-associative deformations
arising in quantum mechanics and gravity in three dimen-
sions is given by considering the dynamics of electrons in uni-
form distributions of magnetic charge. All of the above lead to
non-associativity becoming an interesting area of research in
physics in recent years [45–50,61]; for example, in connec-
tion to non-geometric R-flux backgrounds, non-associative
star products have been investigated [46] and perturbative
non-associative field theories were constructed [47]; the con-
struction of non-associative Weyl star products was under-
taken [48]; physical consequences of non-associativity were
examined [50], finding that momentum space is quantized
and implying a coarse-graining of momentum space with
a uniform monopole background. Regarding different direc-
tions of the research on non-associativity in quantum physics,
the twist we have constructed in this paper could be helpful
in studying the properties of the non-associative star product
corresponding to the Snyder spacetime. Especially, it could
be helpful in investigating the physical consequences of this
non-associativity by generalizing approaches presented in
[23,62].

An example is given by the investigation of QFT in a Sny-
der background. The knowledge of the star product allows
one to study the quantization using standard methods of non-
commutative QFT. In this way, the free scalar field theory in
the Hermitian realization (3) has been developed in [43],
where it was shown that it is equivalent to the standard com-
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mutative theory. The interacting φ4 theory has been investi-
gated in a linear approximation in β in [44] and in the full
β dependence in [63]. Of course, the interacting theory is no
longer equivalent to its commutative counterpart. In partic-
ular, the noncommutativity and nonassociativity of the star
product introduce several new features. For example, nonas-
sociativity entails that the φ4 interaction term is not uniquely
defined, but three inequivalent possibilities occur. Moreover,
the total 4-momentum is not conserved in some loop dia-
grams. This fact makes the computation of these diagrams
particularly difficult. A partial evaluation has been performed
in [63], where it has been shown that the Snyder star prod-
uct can introduce a natural regularization on at least some of
the one-loop diagrams of the two-point functions. However,
in the limit of vanishing incoming momenta, a variant of
the UV/IR mixing of noncommutative field theory [7,8,64]
appears. It would be interesting to further investigate this
subject. Finally, we notice that, in the context of QFT, the
knowledge of the exact form of the twist obtained in the
present paper can be useful for the study of the statistics of
identical particles in Snyder spacetime [57,65].
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A Construction of the star product

Using (8), it can be checked that [51,52,55]

e−iλk·x̂ pμe
iλk·x̂ � eiq·x = Pμ(λk, q)eiq·x , (A.1)

with λ a real parameter. Differentiating both sides of this
equation by λ and noting that the realisation of the non-
commutative coordinates can be written in the form x̂μ =
xαϕα

μ(βp2) + βpμχ(βp2), it follows that the function
Pμ(λk, q) satisfies the differential equation

dPμ(λk, q)

dλ
= kαϕ α

μ (P(λk, q)) . (A.2)

Defining x̂μ

(0) = xαϕ α
μ , one obtains that the following

equality holds

e−iλk·x̂(0) pμe
iλk·x̂ � eiq·x = Pμ(λk, q)eiq·x+iQ(λk,q), (A.3)

with λ a real parameter. Differentiating both sides of (A.3)
by λ and using (A.2), it follows that Q(λk, q) satisfies the
differential equation

dQ(λk, q)

dλ
= kαχα (P(λk, q)) , (A.4)

with Q(0, q) = 0 and χα ≡ βpαχ(βp2).
Differential equations (A.2) and (A.3) can be used to cal-

culate the functions Pμ(k, q) and Q(k, q) for the hermitian
realisation (3), which corresponds to ϕ α

μ = δα
μ+βpμ pα and

χ = −i n+1
2 . Having the functionsPμ(k, q) andQ(k, q), one

can calculate Dμ(k, q) and G(k, q) to get

Pμ(k, q) =
qμ +

(
sin

√
βk2√

βk2
+ k·q

k2 (cos
√

βk2 − 1)

)
kμ

cos
√

βk2 − k·q
k2

√
βk2 sin

√
βk2

,

(A.5)

Q(k, q) = i
n + 1

2
ln

(
cos

√
βk2 − k · q

k2

√
βk2 sin

√
βk2

)
.

(A.6)

From here it follows that

Dμ(k, q) = 1

1 − βk · q

[(
1 − βk · q

1 + √
1 + βk2

)
kμ

+
√

1 + βk2qμ

]
, (A.7)

G(k, q) = i
n + 1

2
ln(1 − βk · q). (A.8)

B Proofs of identities

B.1 General identity

In order to prove the identities (39) and (38), it is helpful to
first prove the general identity

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,kα
k xn = (1 + x)α. (B.1)

One starts by noticing that the term (1 + x)α can be written
in the following way

(1 + x)α = eα ln(1+x) =
∞∑
k=0

(α ln(1 + x))k

k!

=
∞∑
k=0

αk

k!

( ∞∑
r=1

(−1)r+1xr

r

)k

=
∞∑
k=0

αk

k!
k∏

i=1

∞∑
ri=1

(−1)ri+1xri

ri

(B.2)
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Since, for fixed k, the terms with xn are such that r1 + · · · +
rk = n and k ≤ n, this can further be written as

(1 + x)α =
∞∑
n=0

n∑
k=0

αk

k!

( ∑
r1+···rk=n

k∏
i=1

(−1)ri+1

ri

)
xn

=
∞∑
n=0

n∑
k=0

αk

k! (−1)n+k

( ∑
r1+···rk=n

k∏
i=1

1

ri

)
xn

=
∞∑
n=0

n∑
k=0

αk

k! (−1)n+k An,k x
n .

(B.3)

In the second equality,
∑k

i=1(ri + 1) = n + k is used and in
the third equality, the definition of An,k (32).

B.2 Identity for d-s

To prove (39), the identity satisfied by the coefficients dk−l,l ,
(39) is first multiplied by xn−l and the resulting expression
is then summed over n from 0 to ∞ to get

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,kdk−l,l x
n−l = √

1 + x . (B.4)

Using (37), the definition of the coefficients d, and rearrang-
ing the left hand side of (B.4), one gets

l∑
s=0

(−1)s
(
l

s

)
x−l

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,k

×
(
l − s + 1

2

)k

xn = √
1 + x, (B.5)

which, using the general identity (B.1), simplifies to

l∑
s=0

(−1)s
(
l

s

)
x−l(1 + x)l−s+ 1

2 = √
1 + x . (B.6)

Therefore

l∑
s=0

(−1)s
(
l

s

)
x−l(1 + x)l−s = 1. (B.7)

Using the binomial formula, the left hand side reduces to

x−l
l∑

s=0

(
l

s

)
(−1)s(1 + x)l−s = x−l [−1 + (1 + x)]l = 1,

(B.8)

concluding the proof.

B.3 Identity for c-s

To prove (38), the identity satisfied by the coefficients c, one
proceeds in a similar way as for the coefficients d. The left
hand side of (38) is given by

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,k

×
[
l−1∑
s=0

(−1)s
(
l − 1

s

)
(l − s)k − dk−l+1,l−1

]
xn−l , (B.9)

which, after setting l = l̃ + 1, becomes

1

x

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,k

×
⎡
⎣ l̃∑

s=0

(−1)s
(
l̃

s

)
(l̃ − s + 1)k − dk−l̃,l̃

⎤
⎦ xn−l̃ (B.10)

Using (B.4), this can further be written as

1

x

l̃∑
s=0

(−1)s
(
l̃

s

)
x−l̃

∞∑
n=0

n∑
k=0

(−1)n+k

k! An,k(l̃ − s + 1)k xn −
√

1 + x

x
.

(B.11)

The obtained expression is then simplified using the general
identity (B.1)

1

x

l̃∑
s=0

(−1)s
(
l̃

s

)
x−l̃(1 + x)l̃−s+1 −

√
1 + x

x

= 1 + x

x

l̃∑
s=0

(−1)s
(
l̃

s

)
x−l̃(1 + x)l̃−s −

√
1 + x

x

= 1 + x

x
x−l̃

l̃∑
s=0

(
l̃

s

)
(−1)s(1 + x)l̃−s −

√
1 + x

x

= 1 + x

x
x−l̃ [−1 + (1 + x)]l̃ −

√
1 + x

x

= 1 + x − √
1 + x

x
. (B.12)

The final expression in (B.12) is precisely the right hand side
of (38), thus concluding the proof.

C 3-Cocycle condition

A quasi-bialgebra over C is defined as an associative algebra
A together with the counit ε : A → C, coproduct � : A →
A⊗ A and an invertible element � ∈ A⊗ A⊗ A, called the
co-associator, with the following properties [24]

123
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(1 ⊗ �)�a = �−1[(� ⊗ 1)�a]�, ∀a ∈ A, (C.1)

[(� ⊗ 1 ⊗ 1)�][(1 ⊗ 1 ⊗ �)�]
= (� ⊗ 1)[(1 ⊗ � ⊗ 1)�](1 ⊗ �), (C.2)

(ε ⊗ 1)�a = a = (1 ⊗ ε)�a, ∀a ∈ A, (C.3)

(1 ⊗ ε ⊗ 1)� = 1 ⊗ 1. (C.4)

Property (C.2) is called the 3-cocycle condition.
Starting with a bialgebra with coassociative coproduct �0,

and counit ε, it is possible to construct a quasi-bialgebra
using twist F , satisfying normalization condition, but not
necessarily satisfying the cocycle condition. The coproducts
are related by

�a = F�0aF−1, ∀a ∈ A. (C.5)

This construction indeed leads to a quasi-bialgebra. Prop-
erty (C.3) trivially follows from the normalization condition
and the co-associator is given by

� = (F ⊗ 1)[(�0 ⊗ 1)F][(1 ⊗ �0)F−1](1 ⊗F−1). (C.6)

It trivially satisfies the property (C.4), which also follows
from the normalization condition. It is also straightforward,
although tedious, to show that the remaining property of
quasi-bialgebra – the 3-cocycle condion (C.2) – also holds.
It follows directly from the construction (C.6) and from the
coassociativity of the coproduct �0.

Similarly, one can extend this construction to quasi-
bialgebroid.
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Minkowski space-time and the star product realizations. Eur. Phys.
J. C 53, 295 (2008). arXiv:0705.2471
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