93 research outputs found

    DEVELOPING A CLINICAL LINGUISTIC FRAMEWORK FOR PROBLEM LIST GENERATION FROM CLINICAL TEXT

    Get PDF
    Regulatory institutions such as the Institute of Medicine and Joint Commission endorse problem lists as an effective method to facilitate transitions of care for patients. In practice, the problem list is a common model for documenting a care provider's medical reasoning with respect to a problem and its status during patient care. Although natural language processing (NLP) systems have been developed to support problem list generation, encoding many information layers - morphological, syntactic, semantic, discourse, and pragmatic - can prove computationally expensive. The contribution of each information layer for accurate problem list generation has not been formally assessed. We would expect a problem list generator that relies on natural language processing would improve its performance with the addition of rich semantic features We hypothesize that problem list generation can be approached as a two-step classification problem - problem mention status (Aim One) and patient problem status (Aim Two) classification. In Aim One, we will automatically classify the status of each problem mention using semantic features about problems described in the clinical narrative. In Aim Two, we will classify active patient problems from individual problem mentions and their statuses. We believe our proposal is significant in two ways. First, our experiments will develop and evaluate semantic features, some commonly modeled and others not in the clinical text. The annotations we use will be made openly available to other NLP researchers to encourage future research on this task and other related problems including foundational NLP algorithms (assertion classification and coreference resolution) and applied clinical applications (patient timeline and record visualization). Second, by generating and evaluating existing NLP systems, we are building an open-source problem list generator and demonstrating the performance for problem list generation using these features

    Assessing Information Congruence of Documented Cardiovascular Disease between Electronic Dental and Medical Records

    Get PDF
    Dentists are more often treating patients with Cardiovascular Diseases (CVD) in their clinics; therefore, dentists may need to alter treatment plans in the presence of CVD. However, it’s unclear to what extent patient-reported CVD information is accurately captured in Electronic Dental Records (EDRs). In this pilot study, we aimed to measure the reliability of patient-reported CVD conditions in EDRs. We assessed information congruence by comparing patients’ self-reported dental histories to their original diagnosis assigned by their medical providers in the Electronic Medical Record (EMR). To enable this comparison, we encoded patients CVD information from the free-text data of EDRs into a structured format using natural language processing (NLP). Overall, our NLP approach achieved promising performance extracting patients’ CVD-related information. We observed disagreement between self-reported EDR data and physician-diagnosed EMR data

    Task 2: ShARe/CLEF eHealth evaluation lab 2014

    Get PDF
    This paper reports on Task 2 of the 2014 ShARe/CLEF eHealth evaluation lab which extended Task 1 of the 2013 ShARe/CLEF eHealth evaluation lab by focusing on template lling of disorder attributes. The task was comprised of two subtasks: attribute normalization (task 2a) and cue identication (task 2b).We instructed participants to develop a system which either kept or updated a default attribute value for each task. Participant systems were evaluated against a blind reference standard of 133 discharge summaries using Accuracy (task 2a) and F-score (task 2b). In total, ten teams participated in task 2a, and three teams in task 2b. For task 2a and 2b, the HITACHI team systems (run 2) had the highest performances, with an overall average average accuracy of 0.868 and F1-score (strict) of 0.676, respectively

    Overview of the ShARe/CLEF eHealth evaluation lab 2013

    Get PDF
    Discharge summaries and other free-text reports in healthcare transfer information between working shifts and geographic locations. Patients are likely to have difficulties in understanding their content, because of their medical jargon, non-standard abbreviations, and ward-specific idioms. This paper reports on an evaluation lab with an aim to support the continuum of care by developing methods and resources that make clinical reports in English easier to understand for patients, and which helps them in finding information related to their condition. This ShARe/CLEFeHealth2013 lab offered student mentoring and shared tasks: identification and normalisation of disorders (1a and 1b) and normalisation of abbreviations and acronyms (2) in clinical reports with respect to terminology standards in healthcare as well as information retrieval (3) to address questions patients may have when reading clinical reports. The focus on patients' information needs as opposed to the specialised information needs of physicians and other healthcare workers was the main feature of the lab distinguishing it from previous shared tasks. De-identied clinical reports for the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Task 3 were from the Internet and originated from the Khresmoi project. Task 1 annotations originated from the ShARe annotations. For Tasks 2 and 3, new annotations, queries, and relevance assessments were created. 64, 56, and 55 people registered their interest in Tasks 1, 2, and 3, respectively. 34 unique teams (3 members per team on average) participated with 22, 17, 5, and 9 teams in Tasks 1a, 1b, 2 and 3, respectively. The teams were from Australia, China, France, India, Ireland, Republic of Korea, Spain, UK, and USA. Some teams developed and used additional annotations, but this strategy contributed to the system performance only in Task 2. The best systems had the F1 score of 0.75 in Task 1a; Accuracies of 0.59 and 0.72 in Tasks 1b and 2; and Precision at 10 of 0.52 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development

    Comparative Effectiveness of Carotid Endarterectomy vs Initial Medical Therapy in Patients With Asymptomatic Carotid Stenosis

    Get PDF
    Importance Carotid endarterectomy (CEA) among asymptomatic patients involves a trade-off between a higher short-term perioperative risk in exchange for a lower long-term risk of stroke. The clinical benefit observed in randomized clinical trials (RCTs) may not extend to real-world practice. Objective To examine whether early intervention (CEA) was superior to initial medical therapy in real-world practice in preventing fatal and nonfatal strokes among patients with asymptomatic carotid stenosis. Design, Setting, and Participants This comparative effectiveness study was conducted from August 28, 2018, to March 2, 2020, using the Corporate Data Warehouse, Suicide Data Repository, and other databases of the US Department of Veterans Affairs. Data analyzed were those of veterans of the US Armed Forces aged 65 years or older who received carotid imaging between January 1, 2005, and December 31, 2009. Patients without a carotid imaging report, those with carotid stenosis of less than 50% or hemodynamically insignificant stenosis, and those with a history of stroke or transient ischemic attack in the 6 months before index imaging were excluded. A cohort of patients who received initial medical therapy and a cohort of similar patients who received CEA were constructed and followed up for 5 years. The target trial method was used to compute weighted Kaplan-Meier curves and estimate the risk of fatal and nonfatal strokes in each cohort in the pragmatic sample across 5 years of follow-up. This analysis was repeated after restricting the sample to patients who met RCT inclusion criteria. Cumulative incidence functions for fatal and nonfatal strokes were estimated, accounting for nonstroke deaths as competing risks in both the pragmatic and RCT-like samples. Exposures Receipt of CEA vs initial medical therapy. Main Outcomes and Measures Fatal and nonfatal strokes. Results Of the total 5221 patients, 2712 (51.9%; mean [SD] age, 73.6 [6.0] years; 2678 men [98.8%]) received CEA and 2509 (48.1%; mean [SD] age, 73.6 [6.0] years; 2479 men [98.8%]) received initial medical therapy within 1 year after the index carotid imaging. The observed rate of stroke or death (perioperative complications) within 30 days in the CEA cohort was 2.5% (95% CI, 2.0%-3.1%). The 5-year risk of fatal and nonfatal strokes was lower among patients randomized to CEA compared with patients randomized to initial medical therapy (5.6% vs 7.8%; risk difference, −2.3%; 95% CI, −4.0% to −0.3%). In an analysis that incorporated the competing risk of death, the risk difference between the 2 cohorts was lower and not statistically significant (risk difference, −0.8%; 95% CI, −2.1% to 0.5%). Among patients who met RCT inclusion criteria, the 5-year risk of fatal and nonfatal strokes was 5.5% (95% CI, 4.5%-6.5%) among patients randomized to CEA and was 7.6% (95% CI, 5.7%-9.5%) among those randomized to initial medical therapy (risk difference, −2.1%; 95% CI, −4.4% to −0.2%). Accounting for competing risks resulted in a risk difference of −0.9% (95% CI, −2.9% to 0.7%) that was not statistically significant. Conclusions and Relevance This study found that the absolute reduction in the risk of fatal and nonfatal strokes associated with early CEA was less than half the risk difference in trials from 20 years ago and was no longer statistically significant when the competing risk of nonstroke deaths was accounted for in the analysis. Given the nonnegligible perioperative 30-day risks and the improvements in stroke prevention, medical therapy may be an acceptable therapeutic strategy

    The Effect of Calcium Ions on Mechanosensation and Neuronal Activity in Proprioceptive Neurons

    Get PDF
    Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on membrane properties which affect voltage-sensitivity of ion channels, threshold of action potentials and SACs can be readily addressed in the chordotonal organ in crab limbs. It is of interest to understand how low extracellular [Ca2+] enhances neural activity considering the SACs in the sensory endings could possibly be Ca2+ channels and that all neural activity is blocked with Mn2+. It is suggested that axonal excitability might be affected independent from the SAC activity due to potential presence of calcium activated potassium channels (K(Ca)) and the ability of Ca2+ to block voltage gated Na+ channels in the axons. Separating the role of Ca2+ on the function of the SACs and the excitability of the axons in the nerves associated with chordotonal organs is addressed. These experiments may aid in understanding the mechanisms of neuronal hyperexcitability during hypocalcemia within mammals

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    Get PDF
    Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January–September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7–10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    Get PDF
    Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January-September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7-7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7-10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19-25%), cerebrovascular diseases (24%, 13-35%), nontraumatic intracranial hemorrhage (34%, 20-50%), encephalitis and/or myelitis (37%, 17-60%) and myopathy (72%, 67-77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore