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DEVELOPING A CLINICAL LINGUISTIC FRAMEWORK FOR PROBLEM

LIST GENERATION FROM CLINICAL TEXT

Danielle Lee Mowery, PhD

University of Pittsburgh, 2014

Regulatory institutions such as the Institute of Medicine and Joint Commission endorse

problem lists as an effective method to facilitate transitions of care for patients. In practice,

the problem list is a common model for documenting a care provider’s medical reasoning

with respect to a problem and its status during patient care. Although natural language

processing (NLP) systems have been developed to support problem list generation, encoding

many information layers - morphological, syntactic, semantic, discourse, and pragmatic - can

prove computationally expensive. The contribution of each information layer for accurate

problem list generation has not been formally assessed. We would expect a problem list

generator that relies on natural language processing would improve its performance with the

addition of rich semantic features.

We hypothesize that problem list generation can be approached as a two-step classifica-

tion problem - problem mention status (Aim One) and patient problem status (Aim Two)

classification. In Aim One, we will automatically classify the status of each problem mention

using semantic features about problems described in the clinical narrative. In Aim Two,

we will classify active patient problems from individual problem mentions and their statuses.

We believe our proposal is significant in two ways. First, our experiments will develop

and evaluate semantic features, some commonly modeled and others not in the clinical text.

The annotations we use will be made openly available to other NLP researchers to encourage
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future research on this task and other related problems including foundational NLP algo-

rithms (assertion classification and coreference resolution) and applied clinical applications

(patient timeline and record visualization). Second, by generating and evaluating existing

NLP systems, we are building an open-source problem list generator and demonstrating the

performance for problem list generation using these features.
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1.0 INTRODUCTION

Clinical narratives serve as a rich source of information describing a detailed account of a

patient’s clinical state over time. These accounts include problems experienced, tests com-

pleted, and treatments administered throughout the patient’s life leading up to and including

the current care encounter. Clinical and biomedical applications have been developed for

clinical narratives that apply natural language processing (NLP) approaches to unlock these

descriptions of problems, tests, treatments from free text and encode these accounts into a

structured form. This structured form can be leveraged by inferencing algorithms for a vari-

ety of clinical and biomedical use cases including sentinel event identification (adverse-drug

event detection for safety prevention [1]), clinical trial recruitment (smoking status identifi-

cation for asthma studies [2]), quality assurance (quality measures of colonoscopy procedures

for patient care [3]), and public health (syndromic classification for biosurveillance [4]). We

propose to use NLP to generate a problem list from clinical narratives and evaluate how

information encoded from clinical narratives contributes to accurate problem list generation.

Problem lists are summaries of a patient’s clinical problems and their current status.

When the problem list does not match the patient’s clinical status, the patient is at risk for

adverse drug events (treated for non-existing problems) or missed care opportunities (not

treated for existing problems) [5]. NLP has been used to aid problem list generation in the

clinical domain by proposing missed problems for inclusion in the structured problem list

[6], evaluating the consistency of medication lists in the patient record [7], and visualizing

problem changes over time in radiology images [8]. Over the last decade, researchers have

developed automated problem list generators using NLP – each system using different types

of features (morphological, syntactic, semantic, and discourse) [6, 8, 9]. Feature encoding
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requires developing and running many NLP modules, increasing the likelihood of generating

errors that propagate throughout the automated problem list generator reducing its accu-

racy. Prior to developing these complex NLP modules, it’s necessary to understand the

contribution of features for this task and estimate the best possible accuracy for a system

given these features. In this thesis, we propose to focus on semantic features and evaluate the

contribution of this information with respect to problem list generation. We will generate

an active patient problem list derived from problem mentions and their semantic features

encoded from the clinical text.

Our long term hypothesis is that both semantic and discourse features will be necessary

for accurate problem list generation. Our short term hypothesis for this thesis is that rich

semantic features improve the accuracy and precision of active problem list generation over

problem list generation without rich semantic features. We will address this hypothesis in

two aims:

Aim One: Build and evaluate a problem mention status generator for clinical narra-

tives. In particular, we will develop classifiers that predict a problem mention status based

on semantic features derived from descriptions in the clinical text.

Hypothesis: Problem mention status classification using rich semantic features will have

higher accuracy than problem mention status classification without rich semantic features.

Aim Two: Build and evaluate a patient problem status generator for clinical narratives.

In particular, we will develop classifiers that predict active patient problems based on se-

mantic features derived from Aim One and define new semantic and discourse features that

could potentially improve accuracy.

Hypothesis: An active patient problem list generated using rich semantic features will

have higher precision than an active patient problem list generated without rich semantic

features.
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We will conclude with a discussion about how additional semantic and new discourse

features could improve problem list generation. We will use manually corrected, feature

annotations whenever possible to evaluate the contribution of this information without noise

generated from the NLP modules. Our approach is grounded using a linguistic discourse

framework to encode semantic and discourse features (Webber et al. [10]).
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2.0 BACKGROUND

Electronic medical records have become an important tool for documenting patient-specific

information relevant to providing care. However, a patient record can contain many refer-

ences to problems that no longer require management. One tool used to reduce the cognitive

burden of tracking current, active problems from past, resolved problems is the problem list.

2.1 PROBLEM LISTS FROM CLINICAL NARRATIVES

The Problem list is a tool for care providers to help facilitate clinical reasoning of a pa-

tient’s active problems in the problem-oriented medical record (POMR), first developed by

Lawrence Weed in the late 1960s [11]. In recent years, health care regulatory institutions

– Center for Medicare and Medicaid Services (CMS), Joint Commission (JCAHO), Health

Level Seven (HL7), etc. – have advocated the use of problem lists in their incentive and

standard programs [12, 13]. As part of the Electronic Health Record Incentive Program,

CMS defined 25 objectives used to demonstrate meaningful use of adopted health informa-

tion technology including the Core Measure 3 objective that states to maintain an up-to-date

problem list of current and active diagnoses in addition to historical diagnoses relevant to the

patients care [12]. JCAHO defined the Standard IM 6.40 to help improve staff communica-

tion using a summary list of all significant diagnoses, procedures, allergies and medications

(pg 22) [13]. The HL7 Personal Health Record System Functional Model PH.2.5.1 defines the

problem list as a broad set of problems including diagnosis, symptoms, hypotheses and any

other problems of interest to the care provider including characterizations indicating problem

status including acute, chronic, resolved, historic, and recurrent [13]. Other credible source

4



definitions for problem lists from regulatory organizations are summarized in Appendix A:

Definitions of Problem Lists from Authoritative Sources [13].

Problem lists can be generated using two types of data - structured and unstructured

- from electronic medical records. Structured data elements can be represented using a

drop down list, checkboxes, radio buttons, etc. In contrast, unstructured data elements

can be represented using free text fields or clinical narratives. Benefits of using structured

data include a predictable, structured format and consistent, conceptual meaning that is

important for use of this data by systems downstream. However, structured problem lists

may not contain a complete list of relevant problems from a patient encounter. In a pilot

study assessing the overlap of problems from structured and unstructured fields, an estimated

50% of problems were only found in the unstructured text reports suggesting many problems

could be missing and might need to be considered for problem list generation [14]. Clinical

narratives are useful for problem list generation because of the rich details recorded about

the patient’s problems and related events that would normally be difficult to aggregate from

only structured data fields, dispersed throughout the patient’s medical record. However,

these rich detailed accounts are captured with loose structure which makes encoding these

descriptions so difficult. Variable lexical expressions (dizziness is synonymous to vertigo),

ambiguous abbreviations (Does MI mean myocardial infarction or mental illness?), spelling

errors (haemocyte vs. hemocyte), and telegraphic constructions (pt +ive for H1N1 ) make

normalizing information from clinical narratives challenging. NLP tools can be used to

regularize and map information from clinical text into a structured problem list.

2.2 LINGUISTIC KNOWLEDGE FOR NATURAL LANGUAGE

PROCESSING

Like human understanding of language, natural language processing systems leverage a va-

riety of linguistic information to extract meaning from text.
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Morphological: Words are constructed using one or more morphemes [15]. Medical

terminologies use Latin and Greek lemmes (base root forms) in conjunction with prefixes

and suffixes to construct words representing problems and procedures. Orthographic rules

are enforced to ensure acceptable word constructions are generated from constituent parts

e.g., afebrile = a meaning without and febrile meaning fever. Derivations, inflections,

compounding, and cliticization are morphological process for generating word variations.

Syntactic: Words are arranged into meaningful linguistic units, phrases and clauses,

using categorical tags. Part of speech is a categorical tag associated with a lexeme (lexicog-

raphy), such as noun, verb, and adjective. There are several commonly used part-of-speech

tag sets. For example, the Penn Treebank tag set has 45 tags, whereas the Brown Corpus

tag set has 87 tags [15]. Phrases and clauses can be combined into sentences governed by

grammar rules that define which combinations are legal. Three types of syntactic ideas for

combining words in sentences are constituency, grammatical relations, and subcategorization

and dependency. Parsing structures a sentence into a linguistic structure such as a string,

tree, or network. Two types of parsing are shallow parsing which generates phrases from

individual words and deep parsing which relates phrases to each other. For example, a noun

phrase (NP) is composed of a Proper-Noun like Radiology, signifying a unique depart-

ment.

Semantic: Words, phrases, and clauses convey meaning by describing entities and events.

Lexical semantics define the meaning of a concept from its lexicon or dictionary of words.

Different words can convey similar meaning (synonymy) e.g., Addison’s disease is equiva-

lent to adrenocortical insufficiency. One word can convey many meanings (polysemy) e.g.,

discharge can be release of a patient from care or a substance from an abscess. Context is

important for disambiguating these cases and selecting the correct sense (word sense dis-

ambiguation). Disambiguating the meaning of a word or phrase can involve mapping to a

standardized vocabulary, terminology, or ontology. For instance, the Unified Medical Lan-

guage System (UMLS) Specialist Lexicon contains over 300,000 words and over 550,00 lexical

variants that map into semantic concepts within the UMLS Metathesaurus [16, 17, 18]. The
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Metathesaurus contains over one million concepts of 135 semantic types. Compositional

semantics entails deriving the meaning of a concept from the encompassing and surrounding

sentences.

Once mapped, linguistic knowledge captured by morphological and syntactic structures

about entities and events is linked to non-linguistic knowledge of the world to perform tasks

accurately through use of meaning representations (pg 545) [15]. Meaning representations

use various formats - first-order logic, semantic networks, and templates - to represent en-

tities and events. Meaning representations serve as constituents to various frameworks -

frames, models, and scripts - used to describe the expected roles of entities and events in

the world (pg 617) [15]. Several tools and frameworks are available for generating meaning

representations and describing entities and events role in the world. For instance, Word-

Net is a lexical resource that contains sense relations for English words including synonymy,

hypernymy, hyponymy, and meronymy [19]. Recently, a similar resource was developed for

clinical text, Medical WordNet [20]. Medical WordNet consists of two lexical resources, Fact-

Net and BeliefNet. Medical FactNet describing “true beliefs” held by medical experts and

Medical BeliefNet describing “general beliefs” held by non-medical experts about medical

phenomenon. The true power of these lexical resources is realized once the representations

are integrated with a semantic role network such as FrameNet or Propbank. FrameNet is a

framework that captures entities and events as frame elements with attributes and relation-

ships describing their role in a real-world scenario [21]. FrameNet II has an estimated 6,100

fully annotated lexical units, 825 semantic frames, and about 135,000 annotated sentences

[22]. Another framework is Propbank that uses verb-driven, predicate-argument representa-

tions instead of FrameNet’s semantic frames [23]. Propbank contains 20 thematic labels for

over 4,500 frame sets defined in the framework.

Discourse: Phrases, clauses, and sentences form semantic units structured as collocated,

coherent groups [15]. Discourse structures convey how each semantic unit relates to a pre-

viously introduced semantic unit using linguistic context. Semantic units are grouped using

low- and high-level discourse structures. Low-level relations enforce meaningful construc-
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tions between ideas. Meaningful relations can include temporal order relations e.g., “pain

after fall.”, and coherence relations e.g., “medication overdose explains his lethargy”. In the

general and biomedical domains, the Penn Discourse Treebank and Biomedical Discourse

Treebank are two models of such relations from text. For the clinical domain, the UMLS

Semantic Network contains 54 possible semantic relationships between semantic concepts

from the Metathesaurus. High-level discourse structures like sections describe the subject

matter of grouped semantic units. For example, the PAST MEDICAL HISTORY section of

a clinical text groups events that occurred in the past.

Pragmatic: In order to fully understand or comprehend the patient’s story, one must

place the meaning being conveyed about the patient in the context of what is known using

situational context. This context can be world or domain knowledge that must be inte-

grated to understand the patient’s case. Obscure statements conveying implicit information

in the clinical narrative may necessitate knowledge of the report type and information com-

monly documented in its sections e.g., the sentence “pt drinks and smokes regularly” in

an adult social history is likely documenting the patient’s frequency of alcohol consumption

and cigarette intake [24]. This situational context could also come from other reports or

structured data fields dispersed throughout the electronic medical record. To date, this in-

formation layer is still left largely unexplored.

Humans use these information layers to understand language.

2.3 CLINICAL NLP AND MACHINE LEARNING

NLP has been an active field of study since the 1950’s [15, 24, 25]. NLP modules were

developed for encoding morphological, syntactic, and semantic information layers focusing

on rule development for syntactic and semantic parsing [25]. Two approaches widely used

include finite state automata and context-free grammars [15]. However, constructing rules

with adequate coverage for all possible grammar construction scenarios was challenging and

8



tedious. Following the late 1980s, researchers developed more robust rules by attributing

probabilities to each rule e.g., probabilistic context-free grammars. Statistical approaches

made NLP systems able to handle tasks under uncertainty and adaptable to new domains.

Statistical approaches that use feature information from data to train a machine learner to

build a classification model for a task is called machine learning [26]. In NLP, a variety of

linguistic information can be encoded as features used to train the machine learner. Types

of machine learning such as reinforcement, semi-supervised, unsupervised, and supervised

learning have different learning parameters. For instance, an unsupervised learner accepts

linguistic features as an input, but does not know the label of the output. On the other hand,

a supervised machine learner accepts linguistic features as input and knows the label of the

output. Challenges to using machine learning for an NLP task include 1) deciding which

linguistic knowledge to use, 2) defining how to represent the feature in an input vector, 3)

defining the output label to predict, and 4) selecting a machine learning approach. When

the input and output label for a task is known, a supervised learning approach can be used

to build an NLP system quickly with high performance.

2.3.1 Supervised Machine Learners

Three types of supervised machine learners are rule-learning, probabilistic, and discrimina-

tive learners. Decision Tree (DT), a rule learner based on inductive learning, generates a

predictive model that learns a sequence of the most informative features that maximize the

split distinguishing one output class label from another [27]. Information measures are used

to define informativeness like information gain. The sequence of features is constructed using

recursive partitioning. During each recursive cycle, one feature is deemed as more informa-

tive than the others, the feature is added as a variable node to the tree, some feature values

become decision branches accompanied by the most probable output label, and other feature

values become an attachment point for the next informative feature [27, 28, 26]. This creates

a tree-like structure. Advantages of DT include a simple representation for interpretation

and simple conversion to a probabilistic classifier (Näıve Bayes tree) [29]. Disadvantages of

DT include generation of large trees with many, uninformative distal nodes and inflexible
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Boolean rules that do not work with uncertainty. Näıve Bayes (NB), a probabilistic learner

based on Bayes’ theorem, generates a predictive model using all features to assign the most

likely output label given the features [30, 31]. The most likely class is determined from

posterior probabilities assuming a strong independence assumption between features and

prior probability using average class label estimates from training data. Advantages of NB

include tolerance of a large set of features and compensation for class imbalances using prior

probabilities. Disadvantages of NB include low classification performance due to violation

of the independence assumption. Support Vector Machine (SVM), a discriminative learner,

projects input features into a n-dimensional space and defines a linear model with a hyper-

plane decision boundary to predict one of two output labels [32, 33]. The hyperplane selected

optimizes the distance between two classes; the support vectors define the margins between

the closest examples of each class. Advantages of SVM include tolerance of a large set of

features, low likelihood of over-fitting, and tolerance of spare data vectors. Disadvantages of

SVM include a complex model and decision boundary that can be hard to deconstruct.

Although each approach can produce different performances, informative features can

increase the likelihood of better classification. The informativeness of a particular feature

can be unclear. Therefore, many NLP researchers provide a large number of different features

to the learner. A disadvantage of this approach is that it leads to curse of dimensionality,

sparseness of data, and misclassification from irrelevant features.

2.3.2 Feature Selection and Machine Learning

Feature selection methodologies can be used to select the most relevant features, thereby

reducing the model’s complexity, reducing the model’s run-time, and increasing the model’s

generalizability [34]. There are three types of feature selection methods defined by their use

during the learning process [34]: filter, embedded, and wrapper. For classification tasks, each

method has advantages and disadvantages. Filter methods like Chi-square and Pearson’s

correlation compute an informative score, rank the features, and select the most relevant

features independent of the classifier applied. However, filter methods may filter out fea-
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tures without evaluating their relationship with a desired outcome measure. For instance,

using a filter method would not guarantee the model optimizes accuracy. Additionally, inad-

equate features may be selected without proper thresholding and no consideration of feature

interactions. Embedded methods like Random Forest and Weighted Näıve Bayes combine

feature selection and classification to optimize the classifier accuracy and reduce the number

of features used. However, the type of feature selection used is tightly coupled with the

classifier. Wrapper methods like sequential forward selection or backward elimination ap-

ply search algorithms, training iterations, and cross validation (e.g., best-first, bidirectional

search method) to determine the usefulness of individual and interacting feature subsets

while optimizing the accuracy of the classifier. Machine learning coupled with feature selec-

tion can be used to learn semantic and discourse features useful for accurate problem list

generation.

2.4 LINGUISTIC FRAMEWORK AND PROBLEM LIST GENERATION

Care providers use rich semantic information to describe signs and symptoms and discourse

to describe their diagnostic reasoning [35]. These clinical descriptions can be modeled using

a linguistic framework developed by Webber et al. [10].

2.4.1 Webber Linguistic Framework

Based on Webber et al.’s linguistic definition of discourse as “a means for speakers to relate

many ideas conveyed within one sentence or among many such that their sum are greater

than the whole [10],” a clinical narrative could be characterized as a discourse containing

many diverse elements that contribute to the understanding of a patient’s status, which is

a sum greater than the whole. Webber defines four discourse structures, eventualities, dis-

course relations, functions, and topics, used to relate ideas in a narrative. Eventualities are

descriptions of events and states. Discourse relations are low-level constructions between
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eventualities that convey a particular semantic relationship. Functions are constructions

that serve communicative roles for eventualities. Topics are segments of narrative that con-

vey the “aboutness” of eventualities described in a passage. We can apply these discourse

elements using NLP to clinical narratives, grouping them into two practical categories, se-

mantic (eventualities) and discourse (discourse relations, functions, and topics) and develop

problem list generators using supervised learning to assert the patient’s status with respect

to the problems mentioned. We expect that automated problem list generation will perform

more accurately when integrating semantic and discourse features derived from NLP sys-

tems used by existing problem list generators than with semantic features alone. In order

to identify potentially useful semantic and discourse features, we reviewed the linguistic and

clinical NLP literature.

2.4.2 Semantics and NLP

Lexical semantics is defined as the use of semantic representations “to capture the meaning

of linguistic inputs and represent them as entities and events and their relationship to the

world as we understand it (pg 548) [15].” We must define a canonical form such that different

linguistic units that mean the same thing have the same semantic representation describing

its sense. A first step is encoding these linguistic inputs to a common representation or

vocabulary.

2.4.2.1 Medical Concepts Eventualities used for clinical information extraction can be

disorders, procedures, drugs, anatomy, temporal expressions, and other concepts. Words and

phrases describing these eventualties can be mapped to concepts in a standard vocabulary

such as the International Classification of Disease-9th version-Clinical Modification (ICD-9-

CM) codes [36], Unified Medical Language System (UMLS) [16, 17, 37] and Systematized

Nomenclature of Medicine–Clinical Terms (SNOMED-CT) [38].

ICD-9-CM is a collection of classification codes for disease and procedures developed
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and maintained by both the National Center for Health Statistics (NCHS) and the Centers

for Medicare and Medicaid Services (CMS) to support billing from health care institutions

[36]. ICD-9-CM codes are universally used in the healthcare for billing, this classification

system only represents subtypes of clinical concepts, not semantic relationships. The UMLS

Metathesaurus, developed and distributed by the National Library of Medicine (NLM) is the

largest thesaurus in the biomedical domain and serves as an knowledge resource consisting

of 135 semantic types [16, 17] including Signs or Symptoms and Diseases or Syndromes.

The NLM also distributes SNOMED-CT, a clinical terminology developed by the College

of American Pathologist, as a subset of the UMLS Metathesaurus. It contains 269,864 cur-

rent classes and 407,510 current names[18]. In an early satisfaction survey of the UMLS,

SNOMED-CT, ICD-9-CM codes, and READ codes (codification system used in the UK),

UMLS and SNOMED-CT performed better in capturing clinical content both with and

without semantic modifiers over other coding systems [39]. More recently, SNOMED-CT

has been evaluated for its coverage and practical use for encoding problem lists demonstrat-

ing reasonable to superior coverage of diagnosis and problem terms using SNOMED-CT at

84% [40], 88% [41], and 92% [42]. The NLM has also made available the Clinical Obser-

vations Recording and Encoding (CORE) subset of SNOMED-CT [38]. This CORE subset

is designed to have high coverage by sampling the most frequent problems observed from

seven institutions including Beth Israel Deaconess Medical Center, Intermountain Health-

care, Kaiser Permanente, Mayo Clinic, Nebraska University Medical Center, Regenstrief

Institute and the Hong Kong Hospital Authority. The CORE subset is comprised of 14,000

terms covering 95% of problems from each institution listed [43]. It was observed that 92%

of the most frequent terms were found in the UMLS, and 81% of the terms in the UMLS had

associated SNOMED-CT codes. Similar coverage was observed in an independent study by

Wright et al [44]. In a study of terms that could not be exactly mapped during the develop-

ment of the CORE subset, these terms required additional semantic features like negation

[45].

NLP tools solely developed for mapping terms to vocabularies include Metamap [46],

IndexFinder [47], and KnowledgeMap [48]. Metamap, developed at the National Library
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of Medicine, is one of the most widely used concept mapping tools in the biomedical do-

main. Metamap uses symbolic NLP to map text into the controlled vocabulary [37, 46, 49].

Indexfinder maps to clinical concepts by generating all permutation of word sets and filter-

ing out irrelevant concepts using syntactic and semantic rules [47]. However, it is unclear

whether mapping by Indexfinder is more accurate than Metamap. Knowledgemap, another

concept mapping algorithm, has been compared against Metamap; however, its performance

was only tested for curricular documents (slide presentations, textual outlines) and it is not

open-source. For problem list generation, Metamap’s reported performances are recall: 70%;

precision: 90% (Meystre et al [50]), recall: 88%; precision: 66% (Solti et al [51]), and recall:

56%; precision: 56% (Sibanda et al [9]). Other concept mapping systems were also devel-

oped for encoding problems, tests, and treatments as part of the 2010 i2B2/VA Challenge

[52] and 2007 and ICD-9-CM codes as part of the 2007 Computational Medicine Challenge

[53]. The highest performing system for each challenge achieved an F-measure 85% and 89%,

respectively.

2.4.2.2 Negation Concept mapping alone may prove insufficient for accurate problem

list generation. A semantic representation must also describe features of the problem so that

we understand how it conceptually relates to or differs from other similar problem mentions.

For instance, these two mentions of cough, “complains of cough” and “denies cough”, differ

by at least one semantic feature - negation. Traditionally, negation is addressed by identifying

pertinent negatives in which a event is being denied. Negation has been approached by most

NLP systems (NegEx, NegFinder, NegExpander) in two steps - detecting negation cues and

determining their scope. One of the most widely used negation algorithms for clinical texts is

NegEx [54]. NegEx is a simple lexical-approach comprised of common negation (“no pain”)

and pseudo-negation (“no change in pain”) regular expressions achieving performances of

recall: 82% and precision: 85%. Average precision was reported as high as 97% for ten

clinical text types (n=42,106 reports) [55]. NegFinder is a negation approach comprised of a

lexical scanner and context-free grammar parser to identify negation terms and the direction

of their scope achieving an average performance of recall: 95% and precision: 93% for a

variety of clinical texts. NegExpander is a simple algorithm that identifies negation terms in
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sentences (“no edema and bleeding”), expands their scope across conjunctions, and replaces

the text with a tokenized noun phrase (NO EDEMA and NO BLEEDING). NegExpander

achieves an average performance of recall: 90% and precision: 93% for 100 outpatient notes

[56].

2.4.2.3 Certainty In clinical text, a problem is not always clearly negated. A problem

can be mentioned as existing with some level of certainty by the writer. For example, in“ un-

likely pneumonia”, pneumonia could be described as having a possible existence. Speculative

language is used by care providers to “hedge” or lessen their confidence about an assertion

such as the existence of a problem diagnosis or cause. Recognizing this phenonenom, NLP

researchers have modeled the relationship between negation and certainty as a continuum

ranging from definitely positive to negative with varying degrees between [57, 58]. NLP

systems designed to detect uncertainty include MITRE’s assertion classifier, StAC and py-

ConText. MITRE’s CARAFE-based assertion classifier uses lexical and document features

to train a conditional random field and rule-based classifier to assert a problem as present,

absent, or possible [59]. MITRE’s classifier achieves high performance for present (recall:

98% and precision: 94%) and absent (recall: 92% and precision: 95%) problems and moder-

ate performance for possible (recall: 53% and precision: 77%) problems. StAC, a statistical

assertion classifier, uses lexical and syntactic features and a support vector machine to clas-

sify a problem with these same labels [57]. StAC’s highest reported performance was recall:

88% and precision: 90% on 1,954 de-identified radiology reports from the Computational

Medicine Center dataset. pyConText, an extension of NegEx, uses regular expressions to

identify uncertainty state cues (“no definite evidence of embolism”) and selects the uncer-

tainty cue/value (“no definite”: probably negated existence) within scope of the problem

mention target [58]. pyConText achieves a high performance of recall: 94% and precision:

93% for 658 CTPA reports.

2.4.2.4 Experiencer Family histories are commonly recorded to help care providers

assess the patient’s risk for a particular disease. NLP systems that detect whether the

problem was experienced by the patient or someone else include ConText [60, 61], Hx [62],
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and HITEX Family history extractor [63]. ConText is an extension of the NegEx algorithm.

ConText assumes all problem mentions are experienced by the patient unless a trigger term

occurs with in the problem’s scope. This simple heuristic has resulted in perfect recall and

precision for 120 reports of 6 different types [61]. Hx is an algorithm for detecting ancillary

cancer histories that uses this same heuristic and a Dynamic-Window method to identify the

relative or non-relative experiencer. A comparison of the Dynamic-Window and ConText

algorithm resulted in similar performances on 300 history and physicals. Other successful

algorithms have been reported [63]. A more challenging problem is asserting whether a

problem is recent.

2.4.2.5 Temporal Grounding Both historical and recent problems can aid diagnosing;

however, recent problems tend to be active, therefore requiring care management. Studies

suggest that distinguishing historical problems is more difficult than identifying recent prob-

lems [60, 61, 64]. The ConText algorithm assumes all problem mentions are recent, unless

otherwise stated. This assumption and features used by ConText achieves moderate perfor-

mance (recall: 76% and precision: 75%) for predicting whether a problem is historical [61].

Temporal features like verb tense and aspect, temporal expressions and sections can help

predict historical problems. Rule learners like Ripper and RL trained with temporal fea-

tures have been shown to outperform ConText with improved recalls and precisions ranging

from 9-10 and 23-28 points, respectively [64]. Other supervised learners like Naive Bayes,

k-Nearest Neighbor, and Random Forests using similar features boost improved performance

over ConText (recall: 80% and precision: 61%) in recall and precision ranging from 0-23 and

0-11 points, respectively [65]. Some NLP systems such as TN-TIES [66, 67] can assign the

time of onset while other systems like TimeText [68, 69, 70] can infer the full duration of a

reported problem.

2.4.2.6 Other Semantic Features As part of the 2010 i2B2/VA Challenge, partici-

pants developed classifiers to assert a variety of semantic features. Semantic features pre-

dicted by NLP systems included whether a patient problem was present, absent, possible,

hypothetical, conditional, or experienced by someone else [52]. The most effective assertion
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classifier had an F-measure of 94% [71]. Other types of semantic features can be extracted

from care providers’ descriptions of patient problems in clinical text. A temporal or modal-

ity feature denotes problems expressed in irrealis, conditional, and hypothetical statements

[61, 72, 73]. One of the most widely used frameworks for capturing time and modality in

the general domain is TimeML [72]. Recent efforts have been made to extend this frame-

work to the clinical domain by adding degree and severity features for a given problem [73].

Other clinical frameworks include the CLEF annotation schema that includes an anatomical

location and laterality feature [74]. In addition to semantic features, the CLEF framework

also introduces the ability to link multiple mentions of the same problem throughout the

narrative.

2.4.3 Discourse and NLP

When care providers read a clinical narrative, they update their understanding of the problem

status by identifying, merging, and reconciling related descriptions of the same problem.

Specifically, when humans read a narrative, they evoke an entity with its first mention.

During each subsequent reference, the reader will access this entity from memory and update

the entity’s status in memory (pg 696) [15]. According to Webber’s discourse model, the

purpose of a discourse is to enable the writer to communicate to the reader his or her

understanding of some situation, directing the reader in synthesizing a similar model [75].

We would expect an NLP system would need to mimic this behavior to accurately assert a

patient problem’s status.

2.4.3.1 Discourse relations Throughout a clinical narrative, a writer represents his or

her understanding about an entity’s status using discourse relations [75]. In the general do-

main, several efforts exist to model discourse relations between entities and events, including

the Penn Discourse Treebank (PDTB) [76] and the Biomedical Discourse Treebank (Bio-

DRB) [77]. PDTB is a collection of 5 discourse relations types between events and entities

in articles from the Wall Street Journal [76]. Annotation of the Wall Street Journal consists

of over 40,600 tokens and 5 types of relations [76]. Other relation annotations include sense
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and attribution annotations. This model was adapted to the biomedical domain as the Bio-

DRB; it includes temporal, conditional, causal and other relationships [77]. In the clinical

domain, the UMLS Semantic Network serves as the most widely used discourse relations

framework; there are 54 semantic relationships of two types - hierarchical and associative.

Hierarchical relationships are isa relations e.g., cough isa Sign or Symptom. Associative

relationships are physical, spatial, functional, temporal, and conceptual relations. Common

types of relationships used to describe a problem include anaphoric, causal, and temporal

relations.

Anaphoric relations In text, linguistic expressions that refer to the same entity are

called coreferential. Anaphoric relation is a type of coreferential relation in which the un-

derstanding of one linguistic expression depends on the previous expression [78, 79]. For

instance in “The pain was mild. It became severe.”, It corefers to the pain. Anaphoric res-

olution has been the focus of both non-medical and medical domains through shared tasks

such as the Message Understanding Conference-6 [80] and i2B2/VA Challenge [81]. For the

2011 i2B2/VA Challenge, the Ontology Development and Information Extraction (ODIE)

corpus was annotated with coreferring entity mentions including people, problems, tests,

and procedures. The most effective NLP system for mention extraction and coreference res-

olution was a rule-based system that achieved an F-measure of 70% partial and 72% exact

match [81] against the reference standard. In a study of 180 clinical reports of coreferring

types from ODIE, the most prevalent anaphoric entities after removing patient mentions

were anatomical sites (30%), disease or syndromes (30%), and signs and symptoms (16%)

[79]. An NLP system may need to identify and resolve these anaphoric mentions to assert a

problem’s status accurately. Some clinical NLP systems have been developed for identifying

anaphoric expressions in clinical narratives [82, 83]. CaRE, an NLP system for extracting

entities and their relationships from discharge summaries, uses orthographic, morphologic,

syntactic, semantic, and temporal features with a Decision Tree approach to learn whether

any pair of entities are coreferring or not [83]. CaRE’s coreference resolution module had an

average F-measure of 95% (B-cubed) and 81% (MUC) among pre-annotated clinical entities

and events. cTAKES, an NLP system built on UIMA for processing clinical texts, uses
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lexical, syntactic, and semantic features and support vector machines with an RBF kernel

to create chains for coreferring mentions [82]. The cTAKES coreference module was evalu-

ated with automatically extracted entities and has an F-measure of 69% (B-cubed) and 35%

(MUC). Common errors were sentence distance limitations and entity recognition failures.

Causality relations In addition to identifying coreferring entities, recording the causal

effects of interventions can provide important information for understanding change of a

problem’s status. For instance, in “her headache was resolved by aspirin”, the headache

status should update to resolved. Causal relations describe the effect one entity or event

has on another. Recent efforts have been made to automatically encode causal relations

between events and entities described in newspaper and biomedical research articles. For

instance, one recent study reported moderate performances (F-measure: 66%) on biomedical

texts using a Charniak parser and abductive inference engine [84]. In clinical text, causal

relationships are encoded to convey the effects between problems, tests, and treatments. For

instance, a causal link can be automatically encoded or inferred between two problems such

as a disease and a radiological finding [85]. In the 2010 i2B2/VA Challenge, causal relations

captured between entities - problems, tests, and treatments - included worsens, improves,

and causes [52]. A support vector machine trained using lexical, syntactic, and semantic

features produced the highest performance (F-measure: 74%) classifying these relations [86].

Temporal relations Causal relationships between entities alone can lead the reader

to incorrectly change a problem’s status. A reader must consider the time order of events

conveyed in clinical narratives. Temporal relations describe the order between two events

in time. One of the most influential temporal frameworks was developed by James Allen

in the 1980s [87]. According to Allen’s temporal framework, events are modeled as inter-

vals with a start, duration, and end. Allen proposes 13 interval relations such as before

and after, during and contains, and overlaps and overlapped-by. These interval types signify

the values for temporal links (TLINKS) between events and temporal expressions in the

TimeML standard [72]. This framework was recently extended by a few groups to capture

temporal relations between clinical events and temporal expressions [73, 88]. Clinical NLP
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models [73] and systems [68, 69, 70, 89] commonly use only 3 of Allen’s relations - before,

after, and during. Several shared tasks have drawn the attention of both the general and

medical NLP community to build temporal extraction and relation systems including pre-

vious SemEval/TempEval [90, 91, 92] and recent i2B2/VA challenges [93]. In the clinical

domain, temporal ordering systems can be used to build patient timelines [94], generate

record chronicles [89] and answer clinical questions [95]. Few systems have formally evalu-

ated and reported the performance of their temporal relations modules on clinical texts [89].

The Clinical e-Science Framework (CLEF) demonstrator, is an information extraction sys-

tem developed to integrate unstructured and structured record data into a patient chronicle

[89]. In a study of 98 documents from 5 patients, 159 CLEF entities, 605 temporal expres-

sions, and 201 TLINKS were marked [96]. The rule-based algorithm uses TLINKS and verb

features to predict temporal order with moderate performance (recall: 59% and precision:

73%) representing a a good baseline for this task. Recent temporal ordering efforts have

demonstrated better accuracies using trained BoosTexter to order topical segments (average

accuracy: 78%) [97] and ranked support vector machines to order medical events (average

accuracy: 82%) [98].

2.4.3.2 Topic When explicit discourse relations fall short, the document structure or

format can help. For instance, writers tend to discuss the same problem in the paragraph

or section which can aid coreference resolution algorithms [82]. In clinical texts, changes in

temporality are strongly correlated with changes in topic [97]. Topics describe entities and

events and what is said about them. These descriptions often manifest in collocated text

segments [10]. In the general domain, topic segmentation or predicting subtopic changes

within a document can be used to aid information retrieval, information extraction, and text

summarization efforts [15]. High-level topic changes can be predicted using conventionalized

document formats for domain-specific document types. For instance, biomedical articles

follow Introduction, Methods, Results, Discussion, and Conclusion (IMRDC) and clinical

texts follow Subjective, Objective, Assessment, and Plan (SOAP) [15]. In clinical texts,

low-level or subtopic changes can often be identified using section headers. Section headers

20



provide useful information for encoding semantic information about problems such as time

occurrence, problem experiencers, and anatomical locations. For instance, HISTORY OF

PRESENT ILLNESS denotes events leading up to the current visit, FAMILY HISTORY de-

notes problems experienced by others, and PHYSICAL EXAM - NECK denotes the anatom-

ical location of the problem. Section taggers that predict both explicit and implicit topic

changes have been developed and evaluated for clinical text [99, 100]. SecTag [99], is a prob-

abilistic section classifier trained for history and physical exams. An evaluation of SecTag

demonstrated higher classification for all sections (recall: 99.0% and precision: 95.6%), ma-

jor sections (recall: 98.6% and precision: 96.2%), and unlabeled sections (recall: 96.6% and

precision: 86.8%). A rule and probabilistic hybrid approach [100] for radiology and urology

reports predicts labeled and unlabeled sections with accuracies over 95%. When section

headers are not explicitly marked in clinical texts, implicit changes in topic can be predicted

using lexical cohesion-based approaches such as the TextTiling algorithm [15]. When text

segments fall out of a section’s scope, unlabeled segments can be classified using supervised

learning approaches trained for conventionalized topic models such as a SOAP classifier [101].

2.4.3.3 Function Entities and events, their relations, and topical context are important

components used to update what is known about problems to a reader. A writer also uses

communicative functions to specify how the reader should integrate this information for

coherent understanding and accurate status updates [10]. Functions convey the speaker’s

communicative intention between text segments describing how they relate to each other

to convey a greater meaning in the discourse. Coherence is a type of function. Coherence

relations have been explored in the general domain. Coherence relations have an important

feature in Rhetorical Structure Theory (RST) [15]. RST consists of 23 rhetorical relations

such as Background, Elaboration or Contrast used to describe how two text segments - a

central nucleus and a dependent satellite - relate to each other. Using RST, the intentions

of the writer can be annotated and the document constructed to show these relations as a

tree. Some rhetorical relations from RST can be found in an annotated subset of the Penn

Discourse Treebank [76] called the RST Discourse TreeBank [102]. Another notable function
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is a speech act. Speech acts have been annotated as part of Dialog Act Markup in Several

Layers (DAMSL) in dialogs from switchboard data [103]. The DAMSL scheme contains two

types of dialog acts, forward and backward communicative functions. Both function types

are organized as a hierarchy of classes. Forward communicative functions consist of 5 super

classes such as Statement, Influencing Addressee Future Action, and Performative. Back-

ward communicative functions consist of 4 super classes such as Accept, Understand, Answer,

and Information-Relation. To our knowledge, no efforts have been made to annotate clinical

text with these coherence relations or communicative acts. Rhetorical relations and speech

acts can provide important predictors for when a reader should update their understanding

of a problem. For instance, the rhetorical relation correction may signify a change or update

for a patient’s problem status.

Writers and readers use various semantic and discourse features to convey and under-

stand a patient’s clinical state. In order to generate an accurate problem list, an NLP system

may need to integrate this information to identify a problem and predict it’s status. The

clinical NLP community has produced several symbolic NLP systems that encode a variety

of these features including MedLEE [104], SAPHIRE [105], Symtext [106], MPLUS [107],

HiTEX [63], and cTAKES [108]. A few researchers have developed NLP systems that encode

and integrate features specifically for problem list generation.

This thesis will focus on encoding semantic aspects of this linguistic framework, specifi-

cally eventualities, for the task of developing a natural language processing system to generate

problem lists from clinical text. We will leave encoding discourse relations, functions, and

topics as these discourse features relate to problem list generation to future work. How-

ever, we will conclude with a discussion about how discourse features could improve active

problem list generation based on our experiments with semantic features.
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2.4.4 Natural Language Processing and Problem Lists

In the past decade, the use of natural language processing for problem list generation has

drawn the attention of the NLP community [109, 51, 9, 8].

2.4.4.1 Meystre et al. Meystre et al. (University of Utah) developed a two-part Au-

tomated Problem List (APL) generator - a background and foreground application [109, 6].

The background module extracts problems and their contexts (document type, sections,

negation, etc.) from cardiology and surgical notes using MetaMap, NegEx, and regular ex-

pressions. These features serve as input to a trained Bayesian Network that asserts whether

a problem was present (probable or certain in the present or past) or not. The foreground

application suggests these proposed problems to care providers for consideration into the

“official”, structured problem list labeled as active, inactive, proposed, or error. The back-

ground NLP system for extracting 80 types of cardiac and general medicine problems from

160 reports of different types achieved a recall of 90% and precision of 69%[50]. The system

was evaluated using a prospective randomized control study in the intensive care and car-

diovascular units at Intermountain Health Care. It was found to improve the sensitivity of

the problem list (from 9% to 41%) and the timeliness of problem addition (from 6 days to 2

days) [6].

2.4.4.2 Solti et al. Solti et al. (University of Washington) validated the generalizability

of the Meystre framework by developing a prototypical problem list generator for identifying

explicit and implicit problems in cardiology progress notes [51]. Their system also uses

MetaMap to extract problems including problems beyond the 80 problems studied by Meystre

et al. Their evaluation is limited to confirming the sensitivity and precision results observed

by Meystre el al. achieving a recall of 88% and precision 66%.

2.4.4.3 Sibanda et al. Sibanda et al. (Massachusetts Institute of Technology) devel-

oped the Category and Relationship Extractor (CaRE) system for extracting semantic in-
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formation from discharge summaries [9]. The CaRE system uses lexical, syntactic, seman-

tic, and discourse features as input to trained Support Vector Machines modules applied

to subtasks of de-identification, semantic category recognition, assertion classification, and

semantic relationship classification. Semantic categories annotated include diseases, symp-

toms, substances, practitioners, dosages, tests, results, and treatments. Assertions marked

include present, absent, uncertain, and alter-association. Semantic relationships labeled be-

tween semantic categories were limited to relationships including only disease and symptom

entities such as “Treatment cures disease” and “Treatment administered for disease. This

information is extracted and presented in a proposed problem list which consists of extracted

problems, their assertions, and care outcomes from related tests and treatments. The evalu-

ation of this system is focused toward an assessment of the system’s individual modules and

a theoretical problem list format is proposed. Both the statistical semantic category recog-

nizer and rule-based assertion classifier achieve F-measures above 90% for most categories.

The statistical semantic relationship recognizer achieves an F-measure of 67%.

2.4.4.4 Bashyam et al. Bashyam et al. (University of California Irvine) developed a

system for extracting problems from radiology reports and discharge summaries - organizing

and visualizing these problems on radiographs [8]. To date, this is the most complex problem

list generator consisting of both rule-based and probabilistic approaches (e.g., Bayes filter,

entity extractor, and discourse analyzer) for extracting problems, their contexts, and core-

ferring relationships as input to a Bayesian belief networks. These problems are organized

using four dimensions - causal, existential, temporal, and spatial – in the electronic medical

record and visualized over DICOM images. The reported performance of select NLP modules

- Bayes filter - recall: 96%, precision: 94%, entity extractor - recall: 87%, precision: 96%,

and discourse analyzer- recall: 97%, precision: 97% - suggest a high performing solution to

problem list generation.

Comparisons between systems is challenging. Each of these automated problem list gen-

erators vary by domain, input features, classification approach, and system evaluation. In
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terms of domain, the Solti system focuses on cardiology cases, the Sibanda addresses cov-

ers emergency medical cases, the Meystre system addresses surgical and cardiology cases,

and the Bashyam system covers radiology cases. Regarding feature inputs, the Solti system

relies solely on semantic features, the Sibanda system trains mainly on lexical, syntactic,

semantic and discourse features, the Meystre system utlizes lexical, semantic, and discourse

features, and the Bashyam system integrates lexical, syntactic, semantic, and discourse fea-

tures. With respect to approach, the Solti system uses Metamap only, the Meystre system

trains a Bayesian Network, the Sibanda system trains a Support Vector Machine, and the

Bashyam system uses a variety of Bayesian approaches. In terms of evaluation, the Solti

system is assessed only through problem identification, the Meystre system is evaluated by

end system output, the Sibanda system is assessed by individual subtasks, and the Bashyam

system is evaluated by only select modules. Although several of these studies have evaluated

the performance of semantic extraction modules used to produce the problem list, to our

knowledge, none of these studies have evaluated the contribution of these semantic features

and their relationship to accurate problem list generation.

For this thesis, we focused our investigation on the development and evaluation of se-

mantic features. In Aim One, we built and evaluated classifiers for problem mention status

generator for clinical narratives. In particular, we developed a problem mention (instance-

level problems) classifier that predicts a problem mention’s status based on semantic features

derived from descriptions in the clinical text. We evaluated the contribution of each semantic

feature to accurate problem mention status generation. In Aim Two, we built and evalu-

ated a patient problem status generator for clinical narratives. In particular, we developed

a patient problem (document-level problems) classifier that predicts active patient problems

based on the underlying semantic features derived from Aim One. We leveraged these fea-

tures to develop a rule-based approach that predicts active patient problems for the problem

list. We conclude with a discussion of future efforts to develop classifiers that encode both

semantic and discourse features as we described using the Webber framework.
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3.0 AIM 1

In this chapter, we begin by asking a simple question “what active problems need to be man-

aged for this patient?”. Initial review of our tools suggested that a richer semantic model was

necessary to automatically address this question. One non-trivial problem to understanding

a patient’s problem status is determining whether the problem is temporally relevant to the

current encounter. We developed a rich temporal and semantic schema that we hypothesized

could prove useful for determining when a problem was experienced and asserting a problem

mention’s status within the clinical narrative. The following papers describe these studies

and our findings in more detail.

Aim One: Build and evaluate a problem mention status generator for clinical narra-

tives. In particular, we will develop classifiers that predict a problem mention status based

on semantic features derived from descriptions in the clinical text.

Hypothesis: Problem mention status classification using rich semantic features will have

higher accuracy than problem mention status classification without rich semantic features.
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3.1 DISTINGUISHING HISTORICAL FROM CURRENT PROBLEMS IN

CLINICAL REPORTS – WHICH TEXTUAL FEATURES HELP?

This study was published as an abstract and manuscript in the proceedings of the 2008 and

2009 Biomedical Natural Language Processing workshops, respectively [64, 110]. Permissions

to use unspecified excerpts from this manuscript were obtained from the original publisher.

3.1.1 Motivation

We aimed to determine what features are useful for identifying active patient problems.

Specifically, we manually annotated data to learn about the particular usefulness of these

features in clinical text and to know how many annotators are needed to produce a reli-

able reference standard. Our long-term goal is to develop a system that encodes semantic

and discourse features that would distinguish active problems from all other mentions. Se-

mantic features we hypothesized were relevant predictors included experiencer, negation and

temporality that could help determine whether a problem was experienced recently by the

patient. Our lab’s existing system ConText could assert whether a problem was affirmed

or experienced by the patient, but less accurate at discerning recent problems from histori-

cal findings [60, 61]. Previous study suggests that ConText performs with moderate recall

(76%) and precision (75%) for predicting historical findings across various report types. This

result suggested that trigger terms and simple temporal expressions are not sufficient for the

task of distinguishing current problems from historical findings. We hypothesized that more

temporal features could improve ConText’s performance.

3.1.2 Research Questions

We designed a study to determine 1) which temporal features discern current problems from

historical findings and 2) whether rich temporal features can discern current problems from

historical findings?
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3.1.3 Methods

We randomly selected seven reports from 6 clinical report types (discharge summaries, surgi-

cal pathology, radiology, echocardiograms, operative gastrointestinal, and emergency depart-

ment reports) dictated at the University of Pittsburgh Medical Center during 2007. These

reports were pre-annotated for problems and a temporal label - historical or recent - by an

infectious disease physician.

Which temporal features discern current problems from historical findings?

To address this question, we annotated the following four temporal features from clinical

text:

Temporal Expressions: Temporal expressions are time operators like dates (May 5th

2005 ) and durations (for past two days), as well as clinical processes related to the encounter

(discharge, transfer). For each problem, we annotated whether a temporal expression mod-

ified it and, if so, the category of temporal expression. We used six major categories from

Zhou et al. [69] including: Date and Time, Relative Date and Time, Durations, Key Events,

Fuzzy Time, and No Temporal Expression. These categories also have types. For instance,

Relative Date and Time has a type Yesterday, Today, or Tomorrow. For the problem in the

sentence “The patient had a stroke in May 2006”, the temporal expression category is Date

and Time with type Date. Statements without a temporal expression were annotated No

Temporal Expression with type N/A.

Tense and Aspect: Tense and aspect define how a verb is situated and related to a

particular time. We used TimeML Specification 1.2.1 forstandardization of tense and aspect

where examples of tense include Past or Present and aspect may be Perfective, Progressive,

Both or None as found in Saur, et al. [72]. We annotated the verb that scoped a problem

mention and annotated its tense and aspect. The primary verb may be a predicate adjective

integral to interpretation of the problem (Left ventricle is enlarged), a verb preceding the
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problem (has hypertension), or a verb following a problem (Chest pain has resolved). In

“her chest pain has resolved,” we would mark “has resolved” with tense Present and aspect

Perfective. Statements without verbs (e.g., No murmurs) would be annotated Null for both.

Trigger Terms: We annotated lexical cues that provide temporal information about a

problem. For example, in the statement, “Patient has past history of diabetes,” we would

annotate “history” as Trigger Term: Yes and would note the exact trigger term. We used

ConText’s lexical cues [60, 61].

Sections: Sections are “clinically meaningful segments and topic labels which act inde-

pendently of the unique narrative” for a patient [99]. Examples of report sections include

Review of Systems (Emergency Department), Findings (Operative Gastrointestinal and Ra-

diology), and Discharge Diagnosis (Emergency Department and Discharge Summary). We

extended Dennys section schema with explicit, report-specific section headers not included

in the original terminology. Similar to Denny, we assigned implied sections in which there

was an obvious change of topic and paragraph marker. For instance, if the sentence “the

patient is allergic to penicillin” followed the Social History section, we annotated the section

as Allergies, even if there was not a section heading for allergies.

Specifically, two computational linguists and one biomedical informatician annotated

the pre-annotated problems temporal expressions and trigger term features iteratively in

groups of six (one of each report type). Between iterations, the three annotators resolved

disagreements through discussion and updated our guidelines. We used Cohen’s kappa,

agreement taking account expected chance, to measure agreement for temporal features (Eq

3.1). C categorical labels compared using a C-by-C contingency table or confusion matrix

can be used to represent agreements (diagonals) and disagreements (discordant pairs) for

assigning an i instance annotation to a particular label. Observed Percent Agreement (AO)

is the proportion of instance annotations agreements. Beyond Observed Percent Agreement,

Cohen’s Kappa (k) takes into consideration expected agreement by chance (AE). Expected

agreement is computed from the marginal probabilities of the table or matrix representing
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the product of the probabilities that each annotator will assign an instance annotation to

that particular category. Cohen’s kappa for temporal expressions and trigger terms by the

final iteration was good at 0.66 and 0.69, respectively. Finally, the biomedical informatician

annotated sections, verb tense, and aspect consulting with one of the computational linguists

for unclear cases.

Cohen’s (k) =

(AO − AE)

(1− AE)
(3.1)

Can rich temporal features discern current problems from historical findings?

Each problem was annotated as historical or recent. The presence (positive instances)

and absence (negative instances) of the temporal label (historical or recent) were used to

define true and false positives and true and false negatives between the reference standard

and the automated classifier - see Table 1.

Historical Recent

Reference Automated Reference Automated
Standard Classifier Standard Classifier

True Positive (TP) historical historical recent recent
True Negative (TN) recent recent historical historical
False Positive (FP) recent historical historical recent
False Negative (FN) historical recent recent historical

Table 1: Definitions for Agreement and Performance Metrics

Since the goal of this study was to redesign the existing rule-based system, ConText, we

experimented with supervised, rule learning approaches including Decision Tree (J48) [28],

Repeated Incremental Pruning to Produce Error Reduction or Ripper (JRip) [111], and Rule

Learner (RL) [112]. We used ten fold cross-validation to train each learner using temporal

features encoded for problem mentions to predict whether a problem was historical or recent.
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3.1.4 Results

The dataset contained 854 problem mentions with a distribution of 113 (13%) historical and

741 (87%) recent statuses.

Which temporal features discern current problems from historical findings?

The J48 Decision Tree algorithm learned 27 rules, six for predicting problems as his-

torical and the remaining for classifying the problem as recent. The rules predominantly

incorporated the trigger term and verb tense and aspect feature values. JRip learned nine

rules, eight for classifying the historical temporal category and one “otherwise” rule for the

majority class. The JRip rules most heavily incorporated the section feature. The RL al-

gorithm found 79 rules, 18 of which predict the historical category. JRip and RL predicted

the following sections alone can be used to predict a problem as historical: Past Medical

History, Allergies, and Social History. Both J48 and RL learned that trigger terms like

previous, known, and history predict historical. There was only one common, simple rule for

the historical category found amongst all three learners: the trigger term no change predicts

the historical category. All algorithms learned a number of rules that include two features

values; however, none of the compound rules were common amongst all three algorithms.

Can rich temporal features discern current problems from historical findings?

We compared the performance of each rule learner - Decision Tree, Ripper, and Rule

Learner - to ConText for 854 problem mentions from 42 reports. Table 2 shows the perfor-

mance of each algorithm on the data set. Each rule learner demonstrated superior accuracy

over the ConText baseline (92.4%) by Decision Tree: 1.6%, Ripper: 4.7%, and Rule Learner:

4.4% points. The RL algorithm outperformed all other algorithms in almost all evaluation

measures. The RL scores were computed based on classifying the 42 cases (eight histori-

cal) for which the algorithm did not make a prediction as recent. ConText and J48, which

exclusively relied on trigger terms, had lower recall for the historical category. All of the
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rule learners out-performed ConText. JRip and RL showed substantially higher recall for

assigning the historical category, which is the most important measure in a comparison with

ConText, because ConText assigns the default value of recent unless there is textual evi-

dence to indicate a historical classification. Although the majority class baseline shows high

accuracy due to high prevalence of the recent category, all other classifiers show even higher

accuracy, achieving fairly high recall and precision for the historical cases while maintaining

high performance on the recent category.

Algorithm Accuracy Recall Precision Recall Precision

(Both) (Historical) (Historical) (Recent) (Recent)

ConText 92.4 73.2 70.1 95.3 95.9

J48 94.0 62.8 88.8 98.8 94.6

RL 96.8 82.2 97.8 99.7 97.5

JRip 97.1 83.2 94.0 99.2 97.5

Table 2: Performance of ConText, Decision Tree, Ripper, Rule Learner algorithms

3.1.5 Discussion

We evaluated which features predict whether a problem is historical or recent. Due to high

prevalence of the recent category, we were especially interested in discovering temporal fea-

tures that predict whether a problem is historical.

Which temporal features discern current problems from historical findings?

With one exception (date greater than four weeks prior to the current visit), temporal

expression features always occurred in compound rules in which the temporal expression

value had to co-occur with another feature value. For instance, any temporal expression in

the category key event had to also occur in the secondary diagnosis section to classify the
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problem as historical. For example, in “SECONDARY DIAGNOSIS: Status post Coronary

artery bypass graft with complication of mediastinitis” the key event is the coronary artery

bypass graft, the section is secondary diagnosis, and the correct classification is historical.

Similarly, verb tense and aspect were only useful in conjunction with other feature values.

One rule predicted a problem as historical if the problem was modified by the trigger term

history and fell within the scope of a present tense verb with no aspect. An example of this

is “The patient is a 50 year old male with history of hypertension”.

Intuitively, one would think that a past tense verb would always predict historical; how-

ever, we found the presence of a past tense verb with no aspect was a feature only when the

problem was in the Patient History section. Sometimes the absence of a verb in conjunction

with another feature value predicted a problem as historical. For example, in the sentences

“PAST MEDICAL HISTORY: History of COPD. Also diabetes” also functioned as a trigger

term that extended the scope of a previous trigger term, history, in the antecedent sentence.

A few historical trigger terms were discovered as simple rules by the rule learners: no change,

previous, known, status post, and history. A few rules incorporated both a trigger term and

a particular section header value. One rule predicted historical if the trigger term was status

post and the problem occurred in the History of Present Illness section. This rule would

classify the problem CABG as historical in “HISTORY OF PRESENT ILLNESS: The pa-

tient is...status post CABG. One important detail to note is that a number of the temporal

expressions categorized as Fuzzy Time also act as trigger terms, such as history and status

postboth of which were learned by J48. A historical trigger term did not always predict the

category historical. In the sentence “No focal sensory or motor deficits on history,” history

may suggest that the problem was not previously documented, but was interpreted as not

presently identified during the current physical exam. Finally, sections appeared in the ma-

jority of JRip and RL historical rules: 4/8 simple rules and 13/18 compound rules. A few

sections were consistently classified as historical: Past Medical History, Allergies, and So-

cial History. One important point to address is that these sections were manually annotated.

Our results revealed a few unexpected observations. We found at least two trigger terms
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indicated in the J48 rules, also and status post, which did not have the same predictive

ability across report genres. For instance, in the statement “TRANSFER DIAGNOSIS: sta-

tus post coiling for left posterior internal carotid artery aneurysm,” status post indicates the

reason for the transfer as an inpatient from the Emergency Department and the problem is

recent. In contrast, status post in a Surgical Pathology report was interpreted to mean his-

torical (e.g., PATIENT HISTORY: Status post double lung transplant for COPD.) In these

instances, document knowledge of the meaning of the section may be useful to resolve these

cases.

Another unexpected finding was that the trigger term chronic was predictive of recent

rather than historical. This may seem counterintuitive; however, in the statement “We are

treating this as chronic musculoskeletal pain with oxycodone”, the problem is being refer-

enced in the context of the reason for the current visit. Contextual information surrounding

the problem, in this case treating or administering medication for the problem, may help

discriminate several of these cases.

Can rich temporal features discern current problems from historical findings?

We assessed ConText in relation to the rules learned from manually annotated temporal

features. J48 and ConText emphasized the use of trigger terms as predictors of whether a

problem was historical or recent and performed with roughly the same overall accuracy. JRip

and RL learned rules that incorporated other feature values including sections and temporal

expressions, resulting in a 12% increase in historical recall over ConText and a 31% increase

in historical recall over J48. Many of the rules we learned can be easily extracted and incor-

porated into ConText (e.g., trigger terms previous and no change). The ConText algorithm

largely relies on the use of trigger terms like history and one section header, Past Medical

History. By incorporating additional section headers that may strongly predict historical,

ConText could potentially predict a problem as historical when a trigger term is absent and

the header title is the only predictor as in the case of “ALLERGIES: peanut allergy”. Al-

though these sections header may only be applied to Emergency Department and Discharge
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Summaries, trigger terms and temporal expressions may be generalizable across genre of re-

ports. Some rules do not lend themselves to ConTexts trigger-term-based approach, partic-

ularly those that require sophisticated representation and reasoning. For example, ConText

only reasons some simple durations like several day history. ConText cannot compute dates

from the current visit to reason that a problem occurred in the past (e.g., stroke in March

2000 ). The algorithm performance would gain from such a function.

3.1.6 Conclusion

Although most problems in six clinical report genres are recent problems, identifying those

that are historical is important in understanding a patient’s clinical state. A simple algo-

rithm that relies on lexical cues and simple temporal expressions can classify the majority

of historical problems, but our results indicate that the ability to reason with temporal ex-

pressions, to recognize tense and aspect, and to place problem in the context of their report

sections will improve historical classification. We learned that we can distinguish recent

problems from historical problems with more temporal features. All rule learners outper-

form ConText in terms of overall accuracy, historical precision, and recent recall.

From this study, we concluded that richer features could help distinguish historical prob-

lems from recent problems. We hypothesized that richer semantic features could also help

discern active problem mentions and other problem mention statuses.
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3.2 SEMANTIC ANNOTATION OF CLINICAL EVENTS FOR

GENERATING PROBLEM LISTS

Related publications were published as abstracts and manuscripts in the proceedings of

the 2010 American Medical Informatics Association Annual Symposium Proceedings [88],

2012 Biomedical Natural Language Processing Workshop [113], and 2013 American Medical

Informatics Association Annual Symposium (3rd place in Student Paper Competition) [114].

Permissions to use unspecified excerpts from the manuscripts were obtained from the original

publishers.

3.2.1 Motivation

From our previous study, we learned that adding more semantic features to a prediction

model can improve a system’s accuracy. We hypothesized that other semantic features could

help distinguish active problems from other mentions. However, annotating many semantic

features can be tedious and error-prone. We wanted to determine whether we could alleviate

the burden of annotating many semantic features using pre-annotated default values. We

hypothesized that adding more semantic features could help distinguish active problem status

from other mention statuses.

3.2.2 Research Questions

We designed a study to 1) develop an annotation model to encode problems and their semantic

features that help identify patient problem mentions and their statuses, 2) determine whether

annotators can annotate these semantic features and their statuses with high agreement and

reliability, and 3) evaluate whether semantic features can accurately predict a problem status?

3.2.3 Methods

We reviewed the linguistic literature for semantic features that might predict a problem sta-

tus.
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Can we develop an annotation model to encode problems and their semantic

features that help identify problem mentions and their statuses?

In recent years, several annotation schemas were developed to model the clinical infor-

mation contained in clinical reports, including CLEF [74] and i2B2 VA/Challenge [52]. Our

aim was to develop a schema that integrates named clinical eventualities like problems and

semantic features that are important for automatically identifying problem mentions and

their statuses and filtering in only active problems that should be added to a patient prob-

lem list. We borrowed heavily from these existing schemas adding new elements when they

did not already exist. We also aimed to align our annotated elements with current annota-

tion initiatives in the NLP community including SHARP Common Type System [115] and

ShARe Semantic Schema [116] to support the development of a generalizable NLP problem

list generator applicable to data from different institutions and different report types. We

applied Webber’s discourse framework to define semantic annotations as eventualities and

their attributes as features in Table 3. For each problem mention, one of the following status

labels could be assigned: Active, Inactive, Resolved, Proposed, Negated, or Other.

Annotation Type Webber Elements Annotation Features

Semantics eventualities Problem, Experiencer, Existence,

(problems) and their Aspect, Certainty, Intermittency,

semantic features Change, Generalized/Conditional,

Mental State, Relation to Current Visit,

Historical

Status Active, Inactive, Resolved,

Proposed, Negated, Other

Table 3: Semantic features and problem mention statuses annotated

37



For this pilot study, we conducted the annotation of problem mentions and their statuses

in three phases: Phase 1) Problem Mention Annotation, Phase 2) Problem Semantic Feature

Annotation, and Phase 3) Problem Status Annotation.

Phase 1) Problem Mention Annotation: We defined a problem mention as all con-

ditions represented as signs, symptoms, diagnoses, and test results. For instance, “Patient

had minor [chest pain]PM.”, chest pain is a problem mention. We randomly selected 1,557

de-identified, emergency department reports from the University of Pittsburgh Medical Cen-

ter. These reports were annotated for problem mentions (instance-level) by a physician,

including signs, symptoms, findings, and diagnoses according to the guidelines described in

Chapman et al. [117, 118]. For this study, we considered these gold standard annotations

and did not develop a system for problem mention boundary detection and normalization

since we were only interested in predicting a problem mention’s status.

Phase 2) Problem Semantic Feature Annotation: Next, we modeled semantic fea-

tures that would help answer the following questions: Who experienced the problem (Ex-

periencer)? Was the problem asserted as being present (Existence)? What phase is the

problem occurring in (Aspect)? How certain is the physician that the problem exists (Cer-

tainty)? Was the problem intermittent in nature (Intermittency)? Did the problem change

(Change)? Was the problem expressed in a generalized or conditional manner (Generalized-

Conditional)? Did the writer express personal feelings or beliefs in postulating the problem

(Mental State)? When did the problem occur relative to the current visit (Relation to CV)?

Whether the problem began more than 2 weeks before the current visit (Historical)? For

each semantic feature, we provided a default value. For each problem mention in the text, we

asked annotators to mark the corresponding semantic feature value representing the context

of the said problem mention by either keeping or changing each semantic feature’s default

value. We provide an example problem mention annotation for each semantic feature and

give its definition and possible values including bolded values as the encoded values applied

to the example sentence and starred values* as the default values provided to annotators

[114]:
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Experiencer: who is experiencing the problem.

Ex. The patients mother had breast cancer.

Experiencer: other, patient*

Existence: whether a problem was present or not in the context of the mention.

He denies chest pain.

Existence: no, yes*

Change: whether there is variation in degree or quality of the problem

Ex. She has had recurrent episodes of viral meningitis.

Change: unmarked*, changing, unchanging, decreasing, increasing, worsening, improving,

recurrence

Intermittency: whether the problem is episodic in nature.

Ex. White female who complains of maroon stools two times.

Intermittent: unmarked*, yes, no

Certainty: the amount of certainty expressed about whether a problem exists or not; Note:

this value is coordinated with Existence value.

Ex. I have no suspicion for bacterial infection.

Certainty: unmarked*, high, moderate, low; Existence: no, yes

Mental State: whether an outward thought or feeling about a problem is mentioned.

Ex. It seems to me there is some active GI bleeding.

Mental State: yes, no*
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Generalized/Conditional: whether a problem is described in a non-particular or condi-

tional context.

Ex. The patient has chest pain at rest.

Generalized/Conditional: yes, no*

Relation to Current Visit: position of the problem time interval to the current encounter.

Ex. Past medical history: Chronic Obstructive Pulmonary Disease.

Relation to Current Visit: before, meets overlaps*, after

Historical: whether a problem started greater than 2 weeks before current visit.

Ex. Past medical history: Chronic Obstructive Pulmonary Disease.

Historical: start >2 wks, start <2 wks, not clear*, not applicable

Can annotators annotate semantic features and statuses with high agreement

and reliability?

We validated the annotation model by conducting a pilot annotation agreement study.

We generated a reference standard of problems and their semantic features using the fol-

lowing approach. We randomly selected (n=35) of the original 1,557 reports from Phase

1. We used 5 emergency department reports to develop our guidelines. For each problem

mention, we annotated the semantic feature values describing the problem in the context

of the sentence. Using 30 emergency department reports, a final reference standard of se-

mantic feature values for each problem was generated independently and adjudicated using

consensus review by a computational linguist and a biomedical informatician. Disagree-

ments were discussed and resolved with two computational linguists. We tested annotators

understanding and ability to annotate the model. We recruited medical and non-medical

students. We trained all subjects together on how to annotate assertions using annotation

software (Protege 3.3.1 with the Knowtator plugin) and guidelines. Subjects were provided

pre-annotations of problems from emergency department reports (n=283 problems). These
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problem annotations contained a preset majority label for each semantic feature (default

value). Subjects were instructed to change the default values using the context of the sen-

tence containing the problem mention (default+annotator). For each semantic feature, we

tested agreement using average Cohen’s kappa values and reliability using a generalizability

coefficient.

Cohen’s Kappa: Inter-annotator Agreement (IAA) is the a reliability measure that

evaluates the degree to which two annotators agree with each other. We computed IAA

using Cohen’s Kappa (Eq. 3.1) explained by Hripcsak and et al. [119] and Artstein and

Poesio [120]. Kappa coefficients greater than 0.70 are considered acceptable.

Generalizability Coefficient: Relative Generalizability Coefficients are measures used

to indicate how many annotators are necessary to reliably annotate each category based

on the inter and intra- annotator variance. The assumption is that as you add annotator

annotations you may reduce these variances and converge toward a higher, hypothetical

annotation performance. Similar to Kappa, the closer to 100 the better the performance;

performances above 0.70 are acceptable. Since the problem annotations were pre-spanned

each possible attribute of a problem can be ranked and represented as a numeric. For ex-

ample, Certainty feature values can be encoded as 1=unmarked, 2=low, 3=moderate, and

4=high. For each semantic feature, we calculated the Relative Generalizability Coefficient

explained by Hripcsak and et al. [119] and graphed the hypothetical gains in performance

over time based on the annotations generated by annotators.

Phase 3) Problem Status Annotation: Finally, for each problem mention in the

text, we defined status definitions that would help physicians generate a problem list of

mentioned problems and their statuses, and prioritize other problem mentions based on

their relevance to the patient encounter and current state of health. We trained two biomed-

ical informaticians (post doctorates) to annotated each problem mention with a status label

(below). One domain expert (physician), adjudicated (Adj) the disagreements, creating the

final reference standard. We measured inter-annotator agreement using Cohen’s kappa (Eq
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3.1). According to our model of problem lists, a mention of a problem mention can have one

of six possible status labels:

Active (A): a problem mention occurring with high certainty within the patient with an

onset within two weeks of the admission and being actively managed during the current

episode of care.

Inactive (I): a problem mention chronically experienced by the patient, but not being man-

aged during the current episode of care.

Proposed (P): a problem mention being considered as occurring or diagnosed with less than

high certainty.

Negated (N): a problem mention being denied or that never occurred.

Resolved (R): a problem mention that occurred during the current episode of care, but was

either successfully treated or culminated on its own.

Other (O): any other problem mention not classified with the five previous status labels.

Can semantic features accurately predict a problem status?

Using the reference standard generated for semantic features of problems, we conducted

a proof of concept study to evaluate the informativeness of the semantic annotations when

predicting a problem mentions status. In order to evaluate the informativeness of the se-

mantic annotations when predicting a problem mentions status, we split the dataset into

training (70%) and test (30%). Using Weka 3.6.8, we selected three supervised learning

classifiers Decision Tree [28], Näıve Bayes [31], and Support Vector Machine [33] to predict a

problem mention status. We used problem and aspectual phase attributes as input features.
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We evaluated the semantic input features using a feature selection study. Using 10-fold cross

validation and the training set, we implemented a best-first, bidirectional search method and

Accuracy evaluation metric to learn the informativeness of each semantic input features for

each classifier. We report the proportion of folds that identified each attribute as informa-

tive to classification on the training set. We built a classifier using the full training set and

applying only the input features observed as useful in one or more training folds to classify

unseen problem mention statuses on the held out test set. We report the performance of the

classifier for both training and test sets using Accuracy, Area under the Receiver Operating

Curve (ROC), Recall, Precision, and F1 score. In order to evaluate the informativeness of

each semantic feature individually, we trained a Support Vector Machine using 10-fold cross

validation. Finally, also we conducted an ablation study (leave-one-semantic-feature-out)

using this system to evaluate how much performance dropped for each status label and it’s

eliminated feature.

3.2.4 Results

In this section, we report results of our annotation study and of our problem mention status

classification study.

Can annotators annotate semantic features and statuses with high agreement

and reliability?

We assessed the average IAA between annotators for annotating semantic features for

each pre-annotated problem mention. In Figure 1 , the average kappa agreement between

an annotator and the reference standard for problem mentions varied from low kappa for

Intermittency: 0.39±0.1 and Generalized or Conditional: 0.46±0.3 to moderate kappa for

Magnitude before Current Visit: 0.5±0.2, Certainty: 0.52±0.1, Units before Current Visit:

0.56±0.2, Mental State: 0.59±0.2, Change: 0.63±0.1, Relation to Current Visit: 0.64±0.1

to high kappa for Existence: 0.8±0.1 and Experiencer: 1.0±0 [114]. For aspectual phase

mentions, annotators correctly identified an average of 21 matches with the reference stan-
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dard. Annotators achieved high kappa for Phase Type: 0.96±0.3 (not shown).

Figure 1: Average kappa agreement with standard deviation for each semantic feature

We assessed the reliability of each semantic feature and projected the number of annota-

tors necessary to produce a hypothetical increase in the reliability using the generalizability

coefficient. Figure 2 demonstrates the projected increase in reliability as the number of an-

notators increases. Semantic features are labeled below the number of annotators needed to

reach a coefficient over 0.70. Using a generalizability coefficient above 0.70, we determined

we would need the following number of annotators to obtain reliable annotations for each

category: 1 (Experiencer and Negation), 2 (Certainty, Change, Mental State, Relation to

CV), 4 (Intermittency), and 8 (GeneralizedConditional)[121].
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Figure 2: Generalizability coefficients for each semantic feature produced by n number of

annotators (actual and hypothetical)

We evaluated the pairwise agreement between annotators for asserting a problem men-

tion’s status. Kappa pair-wise agreement was A1-A2 (23.6%), A1-Adj (33.4%), and A2-Adj

(77.3%) [114]. The most prevalent status was Active among A1, A2, and Adj annotators in

Table 4. The majority of disagreements between A1-A2 were Inactive/Active.

Active (A) Inactive (I) Proposed (P) Resolved (R) Negated (N) Other (O)

A1 110 (39%) 101 (36%) 5 (2%) 29 (2%) 31 (11%) 7 (2%)
A2 198 (70%) 28 (10%) 7 (2%) 0 (0%) 28 (10%) 22 (8%)
Adj 181 (64%) 21 (7%) 7 (2%) 22 (8%) 26 (9%) 25 (9%)

Table 4: Distribution of status labels for each annotator
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Can semantic features accurately predict a problem status?

We evaluated the relevance of each semantic feature for asserting the status of a problem

mention. We observed problem semantic features, Experiencer and Existence, are consis-

tently 100% informative for asserting a problem mention’s status among classifiers [114].

Näıve Bayes and Support Vector Machine determined all features relevant for at least 1 fold.

In contrast Decision Tree, only determined 5 of 10 features relevant.

Problem Attributes Decision Tree Näıve Bayes Support Vector Machine

Experiencer 10 (100%) 10 (100%) 10 (100%)
Existence 10 (100%) 10 (100%) 10 (100%)
Change 0 (0%) 8 (80%) 10 (100%)
Intermittency 0 (0%) 3 (30%) 4 (40%)
Certainty 7 (70%) 8 (80%) 10 (100%)
Mental State 0 (0%) 2 (20%) 9 (90%)
GeneralizedConditional 0 (0%) 1 (10%) 3 (30%)
Relation to Current Visit 0 (0%) 8 (80%) 10 (100%)
Historical 0 (0%) 6 (60%) 6 (60%)
Aspectual Phase 1 (10%) 8 (80%) 10 (100%)

Table 5: Count (%) of Folds/10 that an attribute was determined as relevant.

Our training set of 198 (70%) problem mentions had a distribution of Active 127 (64%),

Inactive 15 (8%), Proposed 6 (3%), Resolved 15 (8%), Negated 18 (9%), and Other 17 (9%);

our test set of 85 (30%) problem mentions had a distribution of Active 54 (64%), Inactive 6

(7%), Proposed 2 (3%), Resolved 7 (8%), Negated 8 (9%), and Other 8 (9%). All classifiers

outperformed a majority class baseline (Active: 64% Overall Accuracy) in Table 6. For

Weighted Average Accuracy, the test set was between 4-9 points lower than the training set

among classifiers. For Weighted Accuracy and F1 Score, Support Vector Machines demon-

strated higher performance over Decision Tree and Näıve Bayes. Performances were higher

for Active and Negated and lower for Inactive and Resolved among classifiers.
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Classifier Status ROC Rec Prec F1

Train Test Train Test Train Test Train Test

Decision Tree A 80.9 83.8 93.7 90.7 77.8 77.8 85.0 83.8
I 79.3 89.9 0.0 0.0 0.0 0.0 0.0 0.0
P 82.0 67.8 33.3 50.0 50.0 50.0 40.0 50.0
R 56.9 73.4 0.0 0.0 0.0 0.0 0.0 0.0
N 99.0 98.1 100.0 100.0 0.9 72.7 94.7 84.2
O 94.2 75.4 94.1 62.5 80.0 55.6 86.5 58.8

Wt. Ave 81.8 83.5 78.3 74.1 66.5 62.7 71.8 67.9

Näıve Bayes A 85.6 84.1 89.0 83.3 77.9 75.0 83.1 78.9
I 83.4 87.6 6.7 0.0 9.1 0.0 7.7 0.0
P 95.2 98.8 16.7 0.0 50.0 0.0 25.0 0.0
R 85.1 80.5 13.3 0.0 40.0 0.0 20.0 0.0
N 99.4 100.0 94.4 100.0 89.5 72.7 91.9 84.2
O 97.8 86.4 70.6 50.0 75.0 50.0 72.7 50.0

Wt. Ave 88.0 86.1 73.7 67.1 69.8 59.2 70.7 62.8

Support Vector A 81.7 76.0 92.9 87.0 84.9 81.0 88.7 83.9
Machine I 85.6 81.0 13.3 0.0 100.0 0.0 85.6 0.0

P 99.3 99.1 83.3 50.0 71.4 50.0 76.9 50.0
R 87.9 76.8 46.7 28.6 70.0 50.0 56.0 36.4
N 99.7 99.1 100.0 100.0 90.0 72.7 94.7 84.2
O 99.2 78.0 100.0 75.0 85.0 60.0 91.9 66.7

Wt. Ave 86.1 79.3 84.3 75.3 85.0 69.3 81.8 71.7

Table 6: Classifier performances on training and test data.

The full dataset of 283 problem mentions had a distribution of Active 181 (64%), Inactive

21 (8%), Proposed 8 (3%), Resolved 21 (8%), Negated 26 (9%), and Other 25 (9%). Baseline

F1 was highly variable with performance as high as 89 for Negated and as low as 13 for

Inactive. Figure 3 shows performance drops ranging from 4-100% (F1: baseline) for each

status when a semantic feature was held out. For each held out feature, we report the most

significant drops from baseline:
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Active (F1: 83): Existence reduced performance by 4%.

Inactive (F1: 13): Change, Aspectual Phase, Relation to Current Visit, and Historical re-

duced performance ranging from 45-100%.

Proposed (F1: 78): Certainty reduced performance by 100%.

Resolved (F1: 33): Aspectual Phase reduced performance by 100%.

Negated (F1: 89): Existence reduced performance by 100%.

Other (F1: 77): Experiencer reduced performance by 29%.

Figure 3: Ablation Study: F1 performance by status

3.2.5 Discussion

For this study, we aimed to 1) develop an annotation model to encode problems and their

semantic features that help identify patient problem mentions and their statuses, 2) deter-

mine whether annotators can annotate these semantic features and their statuses with high

agreement and reliability, and 3) evaluate whether semantic features can accurately predict
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a problem status?

Can annotators annotate these semantic features and their statuses with high

agreement and reliability?

We introduced an annotation schema for clinical information extraction of events for

generating an accurate problem mention status. We learned that agreement for problem

semantic features ranges from moderate to high. This observation is not surprising as the

literature shows agreement suffers beyond 2 categories especially for less prevalent categories

[122]. Indeed, a study of the CLEF schema reports moderate F1 scores in the 60s for entity

and relationship annotations from clinical narratives [74].

Can semantic features accurately predict a problem status?

From our feature selection study, we learned that attributes like Experiencer, Existence,

and Certainty are consistently more informative than other attributes for predicting mention

status among classifiers. From our classification study, we observed that classifiers (Näıve

Bayes and Support Vector Machine) that use rare occurring attributes like Change, Mental

State, and Intermittency perform better than a classifier (Decision Tree) that does not use

them. We suspect our classifiers performed poorly predicting status labels for Inactive, Re-

solved, and Proposed due to subtle differences in definition between status labels (Inactive

and Resolved) and few instances in the dataset. In terms of comparable studies, like the

i2B2 assertion classification, other researchers have demonstrated adding lexical, syntactic,

section, and other semantic annotations can boost performance [59]. In future work, we

plan to assess how annotating words and phrases as evidence representing the rationale for

assigning a particular attribute value can help teach a supervised machine learner such as

the Support Vector Machine how to automatically assign new problem annotation attributes

reducing annotator efforts [123]. For example, in the sentence, “possible pneumonia”, in-

struct the annotator to annotate the word possible as evidence of Certainty: Moderate.
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For the ablation study, we learned which features are most informative for asserting

a problem mention status by observing the largest drop in performance once a semantic

features was held out. As a first step toward evaluating the usefulness of each semantic

feature, we performed the study using a multi-class machine learner. This preliminary work

suggests relationships between semantic attributes and predicting a problem mentions status.

The initial findings are intuitive. Based on our status definitions and these observed general

relationships, we have developed a rule-based approach to asserting a problem mention’s

status using the following rules:

1. If Existence: no, assign Negated.

2. Else if Certainty: moderate or low, assign Proposed.

3. Else if Change: NOT(unmarked) AND Relation to Current Visit: after, assign Active.

4. Else if Experiencer: other OR (GeneralizedConditional: yes OR Historical: N/A), assign

Other.

5. Else if Relation To Current Visit: before OR Historical: greater than 2 weeks, assign

Inactive.

6. Else if Existence: yes AND (Aspectual Phase: culmination OR Change: improved),

assign Resolved.

7. Else if Relation to Current Visit: After OR Historical: N/A, assign Other.

8. Else, assign Active.

In future work, we will develop individual classifiers for each status and evaluate the

predictive ability of each individual attribute value. We will expand our study and apply

these rules to classify statuses for problem mention from other report types such as discharge

summaries, radiology, electrocardiograms, and echocardiograms. These problem mentions

and their statuses will be used to infer annotated document-level patient problem annota-

tions and their statuses for this corpus. These studies will be discussed in next chapter.
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3.2.6 Conclusion

We concluded that some semantic features can be more difficult to annotate than others.

However, some features can be useful for predicting a problem mention’s status from clinical

text for more prevalent statuses. We apply rules learned from the ablation study to assert a

problem mention’s status in Chapter 4, Section 4.3.

In this study, we were able to discern the active problem mentions from other problem

mention statuses. We identified semantic features necessary for asserting other statuses. We

hypothesized that these other problem mention statuses could be used to filter non-Active

problems from an active patient problem list.
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4.0 AIM 2

In this chapter, we develop a patient problem list reference standard and evaluate how well

existing clinical vocabularies cover patient problem concepts. Then, we will report on ex-

periments leveraging problem mentions and their semantic feature annotations to generate

an active patient problem list. Finally, we conclude with initial steps toward generating and

evaluating new semantic and discourse features that could potentially help active patient

problem list generation and visualization of problem mention descriptions from clinical text.

Aim Two: Build and evaluate a patient problem status generator for clinical narratives.

In particular, we will develop classifiers that predict active patient problems based on se-

mantic features derived from Aim One and define new semantic and discourse features that

could potentially improve classification based on an error analysis of the clinical text.

Hypothesis: An active patient problem list generated using rich semantic features will

have higher precision than an active patient problem list generated without rich semantic

features.
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4.1 GENERATING PATIENT PROBLEM LISTS FROM THE SHARE

CORPUS USING SNOMED CT/SNOMED CT CORE PROBLEM LIST

Aspects of this study were published as a manuscript in the proceedings of the 2014 BioNLP

Workshop [124]. Permissions to use unspecified excerpts from this manuscript were granted

from the original publisher.

4.1.1 Motivation

A patient problem list from a clinical document can be derived from individual problem

mentions within the clinical document once these mentions are mapped to a standard vo-

cabulary. In order to develop and evaluate accurate document-level inference engines for

this task, a patient problem list could be generated using a standard vocabulary. Adequate

coverage by standard vocabularies is important for supporting a clear representation of the

patient problem concepts described in the texts and for interoperability between clinical

systems within and outside the care facilities. In this pilot study, we report the reliability

of domain expert generation of a patient problem list from a variety of clinical texts and

evaluate the coverage of annotated patient problems against SNOMED CT and SNOMED

Clinical Observation Recording and Encoding (CORE) Problem List.

4.1.2 Research Questions

The goals of this study are 1) determine how reliably two domain experts can generate a

patient problem list leveraging SNOMED CT from a variety of clinical texts and 2) assess

the coverage of annotated patient problems from this corpus against the CORE Problem List.

4.1.3 Methods

In this IRB-approved study, we obtained the manually-annotated Shared Annotated Resource

(ShARe) corpus originally generated from the Beth Israel Deaconess Medical Center [116]

and stored in the Multiparameter Intelligent Monitoring in Intensive Care, version 2.5
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(MIMIC II) database [125]. This corpus consists of discharge summaries (DS), radiology

(RAD), electrocardiogram (ECG), and echocardiogram (ECHO) reports from the Intensive

Care Unit (ICU). The ShARe corpus was selected because it 1) contains a variety of clinical

text sources, 2) links to additional patient structured data that can be leveraged for further

system development and evaluation, and 3) has encoded individual problem mentions with

semantic feature annotations within each clinical document that can be leveraged to develop

and test document-level inference engines. We elected to study ICU patients because they

represent a sensitive cohort that requires up-to-date summaries of their clinical status for

providing timely and effective care.

For this annotation study, two annotators - a physician and nurse - were provided inde-

pendent training to annotate clinically relevant problems - signs, symptoms, diseases, and

disorders - at the document-level for 20 reports. The annotators were given feedback based

on errors over two iterations. For each patient problem in the remaining set, the physician

was instructed to review the full text, span the a problem mention, and map the problem

to a CUI from SNOMED-CT using the extensible Human Oracle Suite of Tools (eHOST)

annotation tool [126]. If a CUI did not exist in the vocabulary for the problem, the physi-

cian was instructed to assign a “CUI-less” label. Finally, the physician then assigned one of

five possible status labels - Active, Inactive, Resolved, Proposed, and Other - based on our

previous study [114] to the mention representing its last status change at the conclusion of

the care encounter. Patient problems were not annotated as Negated since patient problems

are assumed negated at a document-level [109]. If the patient was healthy, the physician

assigned “Healthy - no problems” to the text. To reduce the cognitive burden of annotation

and create a more robust reference standard, these annotations were then provided to a nurse

for review. The nurse was instructed to add missing, modify existing, or delete spurious pa-

tient problems based on the guidelines.

How reliably can two domain experts generate a patient problem list lever-

aging SNOMED CT from a variety of clinical texts?
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We assessed how reliably annotators agreed with each other’s patient problem lists using

inter-annotator agreement (IAA). We evaluated IAA in two ways: 1) by problem CUI and

2) by problem CUI and status. Since the number of problems not annotated (i.e., true

negatives (TN)) are very large, we calculated F1-score as a surrogate for kappa [119].

F1-score is the harmonic mean of recall and precision, calculated from true positive , false

positive , and false negative annotations, which were defined as follows:

true positive (TP) = the physician and nurse problem annotation was assigned the same

CUI (and status)

false positive (FP) = the physician problem annotation (and status) did not exist among

the nurse problem annotations

false negative (FN) = the nurse problem annotation (and status) did not exist among

the physician problem annotations

Recall =
TP

(TP + FN)
(4.1)

Precision =
TP

(TP + FP )
(4.2)

F1-score =

2
(Recall ∗ Precision)

(Recall + Precision)
(4.3)
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We sampled 50% of the corpus and determined the most common errors. These errors

with examples were programmatically adjudicated with the following solutions:

Spurious problems: procedures

solution: exclude non-problems via guidelines

Problem specificity: CUI specificity differences

solution: select most general CUIs

Conflicting status: negated vs. resolved

solution: select second reviewer’s status

CUI/CUI-less: C0031039 vs. CUI-less

solution: select CUI since clinically useful

We split the dataset into about two-thirds training and one-third test for each report

type. The remaining data analysis was performed on the training set.

What is the coverage of annotated patient problems from this corpus against

the CORE Problem List?

We characterized the composition of the reference standard patient problem lists against

two standard vocabularies SNOMED-CT and SNOMED-CT CORE Problem List. We eval-

uated the coverage of patient problems against the SNOMED CT CORE Problem List since

the list was developed to support encoding clinical observations such as findings, diseases,

and disorders for generating patient summaries like problem lists. We evaluated the coverage

of patient problems from the corpus against the SNOMED-CT January 2012 Release which

leverages the UMLS version 2011AB. We assessed recall (Eq 4.1), defining a TP as a patient

problem CUI occurring in the vocabulary and a FN as a patient problem CUI not occurring

in the vocabulary.
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4.1.4 Results

We report the results of our annotation study on the full set and vocabulary coverage study

on the training set.

How reliably can two domain experts generate a patient problem list lever-

aging SNOMED CT from a variety of clinical texts?

The full dataset is comprised of 298 clinical documents - 136 (45.6%) DS, 54 (18.1%)

ECHO, 54 (18.1%) RAD and 54 (18.1%) ECG. Seventy-four percent (221) of the corpus was

annotated by both annotators. Table 7 shows agreement overall and by report, matching

problem CUI and problem CUI with status. Inter-annotator agreement for problem with

status was slightly lower for all report types with the largest agreement drop for DS at 15%

(11.6 points).

Report Type CUI CUI + Status

DS 77.1 65.5
ECHO 83.9 82.8
RAD 84.7 82.8
ECG 89.6 84.8

Table 7: Document-level IAA by report type for problem (CUI) and problem with status

(CUI + status)

We report the most common errors by frequency in Table 8. By report type, the most

common errors for ECHO, RAD, and ECG were CUI/CUI-less, and DS was Spurious Con-

cepts.
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Errors DS ECHO RAD ECG

SP 423 (42%) 26 (23%) 30 (35%) 8 (18%)
PS 139 (14%) 31 (27%) 8 (9%) 0 (0%)
CS 318 (32%) 9 (8%) 8 (9%) 14 (32%)
CC 110 (11%) 34 (30%) 37 (44%) 22 (50%)
Other 6 (>1%) 14 (13%) 2 (2%) 0 (0%)

Table 8: Error types by frequency - Spurious Problems (SP), Problem Specificity (PS),

Conflicting status (CS), CUI/CUI-less (CC)

What is the coverage of annotated patient problems from this corpus against

the CORE Problem List?

In the training set, there were 203 clinical documents - 93 DS, 37 ECHO, 38 RAD, and

35 ECG. The average number of problems were 22±10 DS, 10±4 ECHO, 6±2 RAD, and

4±1 ECG. There are 5843 total current problems in SNOMED-CT CORE Problem List. We

observed a range of unique SNOMED-CT problem concept frequencies: 776 DS, 63 ECHO,

113 RAD, and 36 ECG by report type. The prevalence of covered problem concepts by

CORE is 461(59%) DS, 36 (57%) ECHO, 71 (63%) RAD, and 16(44%) ECG. In Table 9,

we report coverage of patient problems for each vocabulary. All reports have SNOMED CT

coverage of problem mentions above 80%. After mapping problem mentions to CORE, we

observed coverage drops for all report types, 24 to 36 points.

Report Patient Annotated with Mapped to
Type Problems SNOMED CT CORE

DS 2000 1813 (91%) 1335 (67%)
ECHO 349 300 (86%) 173 (50%)
RAD 190 156 (82%) 110 (58%)
ECG 95 77(81%) 43 (45%)

Table 9: Patient problem coverage by SNOMED-CT and SNOMED-CT CORE
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4.1.5 Discussion

In this feasibility study, we evaluated how reliably two domain experts can generate a patient

problem list and assessed the coverage of annotated patient problems against two standard

clinical vocabularies.

How reliably can two domain experts generate a patient problem list lever-

aging SNOMED CT from a variety of clinical texts?

Overall, we demonstrated that problems can be reliably annotated with moderate to

high agreement between domain experts (7). For DS, agreement scores were lowest and

dropped most when considering the problem status in the match criteria. The most preva-

lent disagreement for DS was Spurious problems (8). Spurious problems included additional

events (e.g., C2939181: Motor vehicle accident), procedures (e.g., C0199470: Mechanical

ventilation), and modes of administration (e.g., C0041281: Tube feeding of patient) that

were outside our patient problem list inclusion criteria. Some pertinent findings were also

missed. These findings are not surprising given on average more problems occur in DS and

the length of DS documents are much longer than other document types. Indeed, annotators

are more likely to miss a problem as the number of patient problems increase. Also, status

differences can be attributed to multiple status descriptions which are harder to track over

a longer document. The most prevalent disagreements for all other document types were

CUI/CUI-less in which identifying a CUI representative of a clinical observation proved more

difficult. An example of Other disagreement was a sidedness mismatch or redundant patient

problem annotation. For example, C0344911: Left ventricular dilatation vs. C0344893:

Right ventricular dilatation or C0032285: Pneumonia was recorded twice.

What is the coverage of annotated patient problems from this corpus against

the CORE Problem List?

We observed that DS and RAD reports have higher counts and coverage of unique patient
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problem concepts. We suspect this might be because other document types like ECG reports

are more likely to have laboratory observations, which may be less prevalent findings in

CORE. Across document types, coverage of patient problems in the corpus by SNOMED

CT were high ranging from 81% to 91% (9). However, coverage of patient problems by CORE

dropped to moderate coverages ranging from 45% to 67%. This suggests that the CORE

Problem List is more restrictive and may not be as useful for capturing patient problems

from these document types. A similar report of moderate problem coverage with a more

restrictive concept list was also reported by Meystre and Haug [109].

4.1.6 Conclusion

Based on this feasibility study, we conclude that we can generate a reliable patient problem

list reference standard for the ShARe corpus and SNOMED CT provides better coverage of

patient problems than the CORE Problem List. In the next section, we plan evaluate from

each ShARe report type how well a patient problem list can be derived from the individual

problem mentions.

Now that we have created a reference standard of patient problems for each clinical report,

the next step is determining how accurately we can generate an active patient problem list

leveraging manually annotated problem mentions using the semantic features described in

Chapter 3, Section 3.2.
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4.2 EXPERIMENTS GENERATING A PATIENT PROBLEM LIST FROM

PROBLEM MENTIONS

4.2.1 Motivation

Our overarching hypothesis is that we can generate an active patient problem list (document-

level) using the underlying problem mentions (instance-level) and their semantic features

from the clinical text. In this pilot study, we test this hypothesis. To avoid confounding fac-

tors from automated problem mention generation, we rely on manually annotated problem

mention annotations. We conclude with an error analysis and future work addressing new

features.

4.2.2 Research Questions

The goals of this study are to determine 1) how accurately can we identify patient problems

from the report using manually annotated problem mentions and semantic features and 2)

how precisely can we assert the status for the identified problems? From our error analysis,

we define new semantic and discourse features that could potentially help generate a more

accurate and precise patient problem list.

4.2.3 Methods

Our hypothesis is that an active patient problem list from a clinical document can be derived

from individual problem mentions and their semantic features.

For this study, we used the manually-annotated patient problem list for the ShARe cor-

pus from Chapter 4, Section 4.1 as well as the manually-annotated problem mentions for

the corpus. These annotated problem mentions represent any of the following UMLS se-

mantic types: “Congenital Abnormality”, “Acquired Abnormality”, “Injury or Poisoning”,
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“Pathogenic Function”, “Disease or Disorder”, “Mental or Behavioral Dysfunction”, “Cell

or Molecular Dysfunction”, “Experimental Model of Disease”, “Anatomical Abnormality”,

“Neoplastic Process”, or “Signs and Symptoms” [127]. These annotations were generated

by two professional medical coders using consensus review. Each problem mention is en-

coded with semantic feature annotations based on the ShARe schema described on the

ShARe/CLEF eHealth Challenge 2014 website [128]. The semantic features of the ShARe

schema contain subtle differences to the Problem Mention schema from our study in Chapter

3, Section 3.2 [114]. In the following section, we describe how we mapped the ShARe schema

semantic annotations to the Problem Mention schema to support generating the active pa-

tient problem list from these problem mention annotations.

How accurately can we generate the patient problem list with the ShARe

problem mention annotations?

There are many potential approaches for leveraging the problem mentions in a report

to generate a patient problem list. We used a simple approach of directly mapping each

problem mention in the report to a patient problem in the problem list. For instance, if the

report had one mention of Pneumonia, we add Pneumonia to the active problem list. We

call this approach direct mapping and we would expect this approach to perform with fairly

high sensitivity, but low precision. As we learned in the paper in Chapter 3, Section 3.2,

semantic features of problem mentions can improve the precision of a problem list, because,

for example, some problem mentions are experienced by someone other than the patient or

are negated. Therefore, we implemented three filters to increase precision. The first filter

assigns all problems as Active. The second filter removes negated problems (Filter Negated).

The third considers non-Active statuses generated from all semantic features when remov-

ing problems from the problem list (Filter non-Active). We describe these three filters below:

1) Assign Active: This filter simply assigns all unique problem mention CUIs from the

report as Active and adds them to the patient problem list.
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2) Filter Negated: This filter assigns each problem mention one of two statuses Negated

or Active. When the problem mention has the semantic feature Existence: no, the mention

is assigned as Negated. The filter then removes these Negated problem mentions and assigns

all the remaining unique problem mention CUIs as Active.

3) Filter Non-Active: This filter assigns each problem mention one of six status labels

- Active, Inactive, Resolved, Negated, Proposed, Other - based on two processing steps, se-

mantic feature transformation and status assertion rules, learned from our study in Chapter

3, Section 3.2 [114]:

3a) Semantic Feature Transformation: We mapped the ShARe schema semantic an-

notations into the Problem Mention schema semantic annotations by 1) condensing classes

and feature values, 2) expanding feature values, 3) eliminating classes, and 4) adding new

classes. A side-by-side comparison of each semantic feature can be found in Figure 4. We

provide one example for each transformation approach:

3a.1) Condense classes and feature values For the ShARe Subject Class, we condensed

the values from the ShARe schema to the Problem Mention schema values. For example,

non-patient labels like Subject Class: family member, donor family member, donor other,

null, or other were condensed to Experiencer: other.

3a.2) Expand feature values For the Uncertainty Indicator Class, we applied the pyCon-

Text lexicon and certainty cues from previous studies [113, 114] to expand the feature values

of Uncertainty Indicator: yes or no to Certainty: high, moderate, low, or unmarked. Specif-

ically, if the template contained Uncertainty Indicator: yes, we would apply a look up using

the Uncertainty Indicator cue span against the pyConText lexicon. The certainty value as-

sociated with the cue was then assigned as the Certainty value. If no value was observed, a

default was assigned as Certainty: high based assumption that most problem mentions are

expressed with high certainty [113].
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3a.3) Eliminating classes We eliminated the Intermittency Class from the Problem Men-

tion schema since this feature was not useful for asserting a problem mention status.

3a.4) Adding new classes We added the Aspectual Phase Class by applying lexicon from

the Problem Mention paper to assign each problem mention’s feature as Aspectual Phase:

initiation, continuation, culmination, or unmarked.

Figure 4: Side-by-side comparison of the ShARe and Problem Mention semantic features
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3b) Status Label Assertion: For each problem mention, we asserted one of six sta-

tuses - Active, Inactive, Resolved, Negated, Proposed, Other - based on the semantic feature

transformation values using the following rules inferred from Aim 1:

1. If Existence: no, assign Negated.

2. Else if Certainty: moderate or low, assign Proposed.

3. Else if Change: NOT(unmarked) AND Relation to Current Visit: after, assign Active.

4. Else if Experiencer: other OR (GeneralizedConditional: yes OR Historical: N/A), assign

Other.

5. Else if Relation To Current Visit: before OR Historical: greater than 2 weeks, assign

Inactive.

6. Else if Existence: yes AND (Aspectual Phase: culmination OR Change: improved),

assign Resolved.

7. Else if Relation to Current Visit: After OR Historical: N/A, assign Other.

8. Else, assign Active.

These rules each serve a specialized purpose. Rule 1 filters denied problem mentions such

as “Denies cough”. Rule 2 asserts proposed problems that may or may not have occurred

with a significant amount of doubt. For example, Rule 3 maintains an active status for prob-

lems described as presuppositions like “if worsening pain return to ER” in which pain is still

an active problem upon discharge. Rule 4 classifies problems experienced by someone other

than the patient or problems that occur in a non-particular or conditional way. Rule 5 assigns

problems that occurred in the past. Rule 6 assigns problems that had occurred at one time,

but have resolved on their own or were successfully treated. Rule 7 assigns problems that

might occur in the future. Otherwise, the problem mention is assigned as an Active problem.

Finally, for each unique problem mention CUI we asserted a patient problem status. For

ECG, ECHO, and RAD, we assigned the problem mention CUI based on the last mention

status in the list for all matched CUIs. For DS, we implemented a series of 11 report-specific

rules that assert a status based on the position of 1 or more CUIs and their statues in a
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problem mention list. We then filtered out all non-Active problem mentions.

For each filter (Assign Active, Filter Negated, and Filter Non-Active), we assessed how

well we could identify active patient problems.

This study is comprised of two tasks leveraging these annotations to 1) identify each

patient problem from the problem mentions in the report and 2) generate the active patient

problem list using three filters. To evaluate how well problem mention annotations identify

active patient problems, we applied F1 as a measure of IAA between the unique problem

mention CUIs and patient problem CUIs. We applied an exact CUI match criteria. We

defined a true positive, false positive, and false negative as follows:

true positive (TP) = the problem mention CUI and patient problem CUI was assigned

the same CUI (and Active status)

false positive (FP) = the problem mention CUI (and Active status asserted by the rule)

did not exist among the patient problem CUI (and Active status)

false negative (FN) = the patient problem CUI (and Active status) did not exist among

the problem mention CUI (and Active status asserted by the rule)

Recall , precision , and F1 were calculated using Eq 4.1 - 4.3. We conducted an error

analysis to quantify several types of errors that occurred and determine what additional

information may be needed to perform the task accurately.

4.2.4 Results

In this section, we report how accurately we can generate the patient problem list from

the ShARe problem mention annotations using direct mapping. We report how accurately

we can generate an active patient problem list using three rules. We conclude with an

analysis of common errors.

66



ShARe Corpus Characterization

For this study, we used manually-annotated problem mentions and their semantic fea-

tures from the ShARe corpus. We maintained the training and test split described in Chapter

4, Section 4.1. By report type, the ShARe dataset contains 6538 DS, 979 ECHO, 136 RAD,

and 576 ECG problem mentions and their semantic features. These mentions were used to

develop semantic feature transformation and status label assertion rules to assert a problem

mention’s status in the clinical text. We performed an evaluation on unseen cases from

the test split of the ShARe dataset which contains 2560 DS, 450 ECHO, 255 RAD, and

60 ECG problem mentions and their semantic features. From the SNOMED CT CUIs and

these problem mention statuses, we generated patient problem lists by predicting a patient

problem and whether its status was active.

How accurately can we generate the patient problem list with the ShARe

problem mention annotations?

In Table 10, both training and test data have similar distributions of patient problem

concepts for each report type. We observed most patient problem concepts occur in DS

followed by ECHO and RAD. For test, using exact match criteria for evaluating whether a

patient problem concept annotation could be generated from an annotated problem mention

concept annotation, overall scores demonstrated moderate performance ranging from F1 of

53.7 to 72.1, recall of 60.0 to 68.8, and precision of 45.3 to 75.9. For each report type, recall

values represent the highest accuracy achievable given this exact CUI matching criteria.

Specifically, we could not identify 33% DS, 33% ECHO, 40% RAD, and 31% ECG of patient

problems using this approach.
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Train Test

Patient Problems Ct (%) F1 Rec Prec Ct (%) F1 Rec Prec

DS - CUIs 1813 (77.3%) 774 (75.0%)

CUIs 51.5 66.0 42.2 54.1 67.1 45.3

ECHO - CUIs 300 (12.8%) 140 (13.6%)

CUIs 61.5 74.4 52.4 57.1 66.7 50.0

RAD - CUIs 156 (6.6%) 85 (8.2%)

CUIs 49.5 60.3 42.0 53.7 60.0 48.6

ECG - CUIs 77 (3.3%) 33 (3.2%)

CUIs 66.7 59.7 75.4 72.1 68.8 75.9

Total CUIs 2,346 (100.0%) 1,032 (100.0%)

Table 10: Overall - unique problem mention CUI to patient problem CUI match

How precisely can we identify active patient problems using problem men-

tions with with three patient problem status rules?

The prevalence of Active patient problems by report are DS: 47.9% (train); 48.4% (test),

ECHO: 93.0% (train); 93.6% (test), RAD: 87.9% (train), 68.2% (test), and ECG: 79.2%

(train); 72.7% (test). For all report types, train and test show similar performance for F1

with DS and RAD performing the lowest (Table 11). The best recall values were achieved

for all reports assigning all problem mention CUIs as Active; however, this rule achieved the

lowest precision values. On the test set, precision increased with the Filter Negated rule.

Peak precision values were achieved by the following rules: Filter Non-Active for DS, RAD,

and ECG; Filter Negated for ECHO.
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Train Test

Active Patient Problems Ct F1 Rec Prec Ct F1 Rec Prec

DS - Active CUIs 869 375

Assign Active 28.3 60.0 18.5 31.5 63.5 21.0
Filter Negated 34.0 59.6 23.8 35.6 62.4 24.9
Filter Non-Active 36.4 48.1 29.3 38.4 50.4 31.0

ECHO - Active CUIs 279 131

Assign Active 59.9 75.3 49.8 55.2 66.4 47.3
Filter Negated 68.8 73.8 64.4 61.5 64.1 59.2
Filter Non-Active 64.3 64.2 64.4 54.6 51.9 57.6

RAD - Active CUIs 137 58

Assign Active 46.0 60.6 37.1 44.2 62.1 34.3
Filter Negated 52.4 59.1 47.1 50.7 62.1 42.9
Filter Non-Active 52.2 49.6 55.7 56.6 55.2 58.2

ECG - Active CUIs 61 24

Assign Active 67.2 67.2 67.2 67.9 75.0 62.1
Filter Negated 67.8 67.2 68.3 69.2 75.0 64.3
Filter Non-Active 74.1 65.6 85.1 75.0 75.0 75.0

Table 11: Performance generating an active patient problem list for each rule by report type

We observed that many errors are caused by false positives in which the problem men-

tion CUI does not exist among the patient problem list CUIs (Table 12). When there is a

one-to-one match between a single problem mention and single patient problem, the status

labels are often mismatched e.g, problem mention: Active and patient problem: Resolved.

In few cases, the status label appears in error e.g., InactiveProposed is concatenated.

Train Test

ReportType NPP OOM SLE NPP OOM SLE

DS 1630 320 9 620 505 8

ECHO 201 67 2 92 38 6

RAD 130 11 0 54 26 0

ECG 15 3 0 7 2 1

Table 12: Some observed error types: NPP=No patient problem, OOM=One-to-one mis-

match, SLE=Status label error
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4.2.5 Discussion

In this study, we evaluated by report type, how accurately we can generate the patient prob-

lem list from the ShARe problem mention annotations based only on CUIs. We reported

how accurately we can we identify the patient problem and how precisely we can assert an

active status using problem mentions with the three rules.

How accurately can we generate the patient problem list with the ShARe

problem mention annotations?

Ideally, we would like to recover all patient problems using explicit problem mentions.

However, for this dataset and exact CUI matching, we determined that at best we can

achieve moderate recalls. We hypothesize that we could reach higher recall levels using the

UMLS hierarchy “is-a” relationships to assert more general or specific CUIs. For example,

when to assert C0032290: Aspiration pneumonia rather than the more general C0032285:

Pneumonia. However, these problem mention descriptions can be dispersed throughout the

clinical text; therefore, merging and reconciling conflicting descriptions can be challenging

and may require anaphoric relations to identify coreferring expressions representing the prob-

lem concept and rhetorical relations to either merge new or correct existing information. For

example, in “Pt has pneumonia. It appears to be caused by aspirating food.” an anaphoric

relation is needed to link coreferring expressions pneumonia and It as well as a rhetorical

relation like Elaboration to denote the type of pneumonia is aspiration from the description.

In a future study, we will run cTAKES coreference resolution module, annotate rhetorical

relations, and quantify how frequently this phenomenon occurs and what features can be

used to correctly assert the more general or specific patient problem. In our error analysis,

we observed that most problem mentions do not enter the patient problem list. This can

be be partially explained by the ShARe annotation scope in which annotations do not in-

clude quantitative expressions of problems such as “Temperature: 101.3” which represents

C0015967: Fever. Some problem mentions are missing within the most prevalent patient

problems in each report type. For instance, we want to address missing problem mention
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annotations for C0015967: Fever in RAD and C3164445: Abnormality of aortic valve in

ECHO, and C0018800: Cardiomegaly in ECG which occur within the top 5 most prevalent

patient problems to obtain significant improvements in recall. On the other hand, perhaps

some problems or findings shouldn’t be added because they lack clinical relevance to the

current visit or are represented by a broader disease concept. In future studies, we will

have our domain experts qualify and quantify the frequency of all types of errors at a more

detailed level.

How precisely can we identify active patient problems using problem men-

tions with three patient problem status rules?

For this study, we aimed to generate an active patient problem list using semantic features

annotations. We observed that Active is the majority class for all report types, but most

prevalent for ECHO, RAD, and ECG producing higher recall and precision values than

DS. For DS, filtering non-Active patient problems was most challenging. We suspect this

is because 1) prevalence of non-Active patient problems is much higher than other report

types, 2) status changes are described more frequently throughout DS than other clinical

reports, and 3) DS report structure is not always chronological, hence the last problem

mention description is not likely the final status change. For instance, many DS end with

the Discharge Diagnosis which enumerates the patient diagnoses for the visit, but not likely

report that they were successfully treated or had controlled all the underlying symptoms.

This information is usually found in the Hospital Course or potentially in the Condition

on Discharge sections. Integrating section knowledge with Filter Status rules may improve

performance. Although precisions ranged from poor (DS) to moderate (ECHO, RAD) to high

(ECG), precision gains were made adding negation and status filtering over a majority class

Active baseline demonstrating that we can generate a more precise active patient problem

list leveraging semantic features. From our error analysis, we observed that the second most

prevalent error occurs when there is a one problem mention to one patient problem CUI

match, but the status labels do not match. For example, the problem mention C0007282:

Carotid artery stenosis - Active and patient problem C0007282: Carotid artery stenosis -
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Resolved are in mismatch. In this case, the carotid stenosis was successfully treated with

a right ICA stent without complication. Identifying whether a CUI for a problem-specific

eventuality such as a treatment or procedure with a causal relation describing an improved

status may prove useful for inferring the patient problem status. Other sources of error could

be in the semantic feature transformation and status label assertion rules. For instance, we

may not have one or more cues necessary to assert one or more values of Certainty or

Aspect Phase. In a follow up study, we will manually annotate the problem mention study

values and statuses for each problem mention. We are actively developing the pyConText

algorithm to encode these semantic feature values and assert the status label. Using these

annotations and pyConText’s output, we will conduct a formative evaluation on the training

set to quantify how frequently these processing steps are the source of performance degrade

throughout this pipeline. In few cases, we observed concatenated status labels. We believe

these were introduced during the annotation process using the annotation tool.

4.2.6 Conclusion

From this study, we conclude that the ShARe annotations and our rules provide moderate

performance generating an accurate patient problem list. More semantic and new discourse

features may improve over these baseline approaches.
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5.0 FINAL CONCLUSIONS AND FUTURE WORK

From this thesis work, we learned many new things and have discovered new directions for

improving patient problem list generation. We learned from our studies that generating

an accurate and precise patient problem list can require identifying, normalizing, and inte-

grating several pieces of semantic information. In particular, we learned 1) distinguishing

historical problems from recent problems requires both document and instance-level features,

2) distinguishing active problem mentions from other problem mention statuses improves us-

ing richer semantic features, 3) generating a reliable patient problem list remains challenging

and patient problem concept coverage may be better using SNOMED CT, and 4) generating

an active patient problem list using rich semantic features will have higher precision than an

active patient problem list generated without rich semantic features.

5.1 DISTINGUISHING HISTORICAL PROBLEMS FROM RECENT

PROBLEMS REQUIRES BOTH DOCUMENT AND

INSTANCE-LEVEL FEATURES.

In our first study, we learned that in order to accurately assign a problem as historical

or inactive, both discourse (sections) and semantic (temporal expressions) features beyond

simple lexical terms (trigger terms) must be identified and applied in a prediction model. In

terms of generating an active problem list, we will experiment with filtering out historical

sections and sentences containing historical temporal markers from document processing to

reduce processing time and false positives. However, historical problems are not the only

source of false positives when generating an active patient problem list.

73



5.2 DISTINGUISHING ACTIVE PROBLEM MENTIONS FROM OTHER

PROBLEM MENTION STATUSES IMPROVES USING RICHER

SEMANTIC FEATURES.

In our second study, we observed that about 8% of problem mentions in reports are inactive.

This 8% contributes to the 36% of problem mentions in reports that are non-active prob-

lems. In order to correctly predict other non-active problem mentions including proposed,

negated, resolved, and other problem mentions, richer semantic features must be annotated.

Understanding how well these semantic features can be annotated and how important they

are for predicting a problem mention’s status is a first step toward validating the need for

these features in our framework. We investigated how well annotators could annotate more

fine-grained attributes like Certainty and Historical. We observed that Certainty and Histor-

ical are more difficult to reliably annotate than other semantic features, such as Experiencer

and Existence. In future work, we will conduct an annotation study in which annotators

mark the “rationale” or evidence for each attribute value and investigate potential factors

that contribute to annotator disagreements [123]. As a first step toward evaluating the

usefulness of each semantic feature, we performed an ablation study using a multi-class ma-

chine learner. This preliminary work suggests relationships between problem attributes and

predicting a problem mentions status. In future work, we will develop individual classifiers

for each status and evaluate the predictive ability of each individual attribute value. We

will also evaluate whether some problem mention concepts are correlated with a particular

problem mention status or attribute value. For example, whether a problem concept is more

likely to be assigned a proposed status or non-default Certainty value [129].
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5.3 GENERATING A RELIABLE PATIENT PROBLEM LIST REMAINS

CHALLENGING AND PATIENT PROBLEM CONCEPT COVERAGE

MAY BE BETTER USING SNOMED CT

In the third study, we learned that generating a consistent and reliable patient problem list

between two clinicians can be more difficult for some report types (discharge summaries) over

others (echocardiograms, electrocardiograms, and radiology reports) due to issues in problem

representation, problem granularity, and missing patient problems. In future work, we will

study how annotators decide which CUI to assign a patient problem, which granularity is

sufficient for a patient problem, and which patient problems should make the patient problem

list using semi-automated approaches combined with interactive search and visualization. We

also observed that although coverage of patient problems for this corpus appears high for all

report types using SNOMED CT, patient problems are not as well represented in SNOMED

CT CORE Problem List. However, in practice, there is a tradeoff between being expressive

enough, but not being too large to search for a suitable concept. This pilot study is a first

step in evaluating the effect of reducing the size of a clinical vocabulary (SNOMED CT) and

the potential implications of whether the reduced vocabulary (SNOMED CT CORE Problem

List) could sufficiently support a practical, clinical problem in terms of concept mapping.

However, other tradeoffs should be evaluated for implementing a problem list generation or

recommendation system such as algorithmic search times identifying a sufficient concept or

clinician search times identifying a missed problem or modification times correcting incorrect

problem suggestions.
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5.4 GENERATING AN ACTIVE PATIENT PROBLEM LIST USING RICH

SEMANTIC FEATURES WILL HAVE HIGHER PRECISION THAN

AN ACTIVE PATIENT PROBLEM LIST GENERATED WITHOUT

RICH SEMANTIC FEATURES

In the final study, we observed that patient problem lists in specialty reports (echocardio-

grams, electrocardiograms, and radiology reports) can be generated more precisely than

patient problem lists in general summary reports (discharge summaries). When implement-

ing a problem list recommendation system, we can leverage this performance difference in

deciding how we provide information to clinicians in a useful way and scope who to target.

One potential design is implementing a patient problem recommendation system for gen-

eralist from specialist reports. This implementation could have higher impact bridging the

information gap and adding findings not mentioned in the discharge summaries which might

already contain an overview of most patient problems from the entire medical record, an

area not evaluated in this current work. In terms of natural language processing and spe-

cialty reports, problem mentions (instance-level) were shown to have better direct mapping

to patient problems (document-level) than for discharge summaries. Potential areas of future

work based on these annotations include visualizing a summary of these problem mention

changes for the resulting active patient problems. User studies could help illuminate the

best output for the patient recommendation system. For instance, just a problem concept?

problem with status? or problem with status and attributes? etc. Other areas of future

work include investigating how new discourse features such (SOAP) and document structure

(order and diagnostic lists) can improve the accuracy of the patient problem list as well this

visualization of the problem status throughout time and the narrative. For a complete list

of proposed discourse features for the Clinical Linguistic Framework, see the Appendix A.

For experiments building an automated SOAP classifier for clinical text, see Appendix B.
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6.0 CONTRIBUTIONS

This thesis is innovative and provides several contributions including the development and

examination of a new framework (Clinical Linguistic Framework) and resources (ShARe

dataset).

6.1 NEW FRAMEWORK

We proposed a new clinical linguistic framework that encodes semantic features according

to an existing linguistic framework by Webber et al. [10]. We included new semantic fea-

tures not leveraged by other problem list generators including fine-grained certainty levels,

temporality, and modality features not addressed by the preceding systems. We have shown

progress evaluating the informativeness and integration of semantic features to assert an ac-

curate patient problem list using this framework and SNOMED CT/SNOMED CT CORE

Problem List. From our error analysis, we gained a deeper understanding of which discourse

features may be useful for problem list generation, providing insight for strategic comput-

ing. This knowledge gives guidance to developers seeking to encode informative features for

problem list generation and has provided new directions for continued research in this area.
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6.2 NEW RESOURCES

We developed a new resource for problem list generation adding a document-layer of patient

problem annotations to the openly, available ShARe corpus [116, 128]. We have defined a

problem, baseline approach, and common resource that can be leveraged and extended by

the greater clinical NLP community. It is our hope that further progress can be made for this

clinical problem and better informatics solutions can be engineered based on our discoveries

to improve both patient care and outcomes.
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APPENDIX A

EXTENDED CLINICAL LINGUISTIC FRAMEWORK

We hypothesize new semantic and discourse features could improve accurate patient problem

list generation. These proposed discourse features and the implemented semantic Clinical

Linguistic Framework to generate active patient problem lists can be found in Table 13.

Annotation Type Webber Elements Annotation Features

Semantics eventualities Problems, Treatments, Tests

and their Experiencer, Existence, Aspect,

semantic features Certainty, Change,

Generalized/Conditional,

Relation to Current Visit

Discourse discourse relations Causal, Temporal, Anaphoric

functions Rhetorical

topics Sections, SOAP classes

Status Active, Inactive, Resolved,

Proposed, Negated, Other

Table 13: Clinical Linguistic Framework with Semantic and Discourse Features
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There are several opportunities we plan to investigate for constructing an automated

patient problem list generator using the ShARe corpus. Through our error analysis, we ob-

served that many patient problems did not have a problem mention annotation. We plan to

increase the number of problem mention annotations by generating regular expressions from

the grounding patient problems from the training data using the pyConText algorithm. For

instance, the quantitative expression “Temperature: 101.3” which represents C0015967:

Fever can be encoded with a regular expression as a problem mention. For this dataset we

can formatively evaluate how well the algorithm detects problem mention boundaries and

normalizes the CUI value based on the existing 2013 ShARe/CLEF eHealth Challenge Task

1 annotations for which the best boundary detection system for problem mentions achieved

F1 of 75 (80 precision and 71 recall) and normalization accuracy of 59. We can also use the

2014 ShARe/CLEF eHealth Challenge Task 2 annotations to evaluate how well we can pre-

dict the semantic features from the ShARe schema. We can build on this representation by

adding the Problem Mention schema as an additional semantic meta-layer for each problem

mention. We will continue to evaluate the effect of our proposed rules and learn new rules

that incorporate knowledge about the document format including functions, topics, and dis-

course relations from our proposed Clinical Linguistic Framework as well as new semantic

annotations representing treatments and tests. In terms of correctly asserting active patient

problem statuses, we have begun machine learning experiments based on the training data

to learn whether our rules for status assertion should include knowledge about the type of

problem. For instance, should some findings be left out of the patient problem list (e.g., an

allergy) or more likely to acquire one label over another (more often Proposed rather Active).

Finally, we will experiment with creating visualizations with the annotations and con-

duct a usability study to determine how best to organize and display the patient problem

list leveraging semantic and discourse features. For instance, is the list best generated using

the original SOAP structure? or using a hierarchical display showing each problem finding’s

relationship to the greater disease? or a timeline showing the evolution of the problem men-

tion with related eventualities like treatments and tests over time?
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APPENDIX B

SOAP CLASSIFIER

Through our literature review and study analyses, we defined several potential new semantic

and discourse features that might improve the accuracy of an active problem list. As a first

step to structuring these problem mentions and other potential problem-specific eventualities

such as related treatments and tests, we developed a discourse topic classifier, a SOAP

classifier, based on Dr. Lawrence Weed’s original patient problem list framework.

B.1 BUILDING AN AUTOMATED SOAP CLASSIFIER FOR

EMERGENCY DEPARTMENT REPORTS

This study was published as an original research article in the 2010 American Medical In-

formatics Association Annual Symposium Proceedings [130] and Journal of Biomedical In-

formatics [101]. Permissions to use unspecified excerpts from this manuscript were granted

from the original publisher [131].

B.1.1 Motivation

We realized problem mentions are described using different contexts to convey the care

provider’s medical decision making. Multiple descriptions of a patient’s problem progression
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over time can be visualized using the original SOAP structure described by Weed [11]. We

chose to capture the intention of the writer from the narrative using this discourse feature

to provide situational context for each potential problem mention identified in the clinical

text. In future work, we would like to investigate how the SOAP framework can be used

to organize the symptoms (S: subjective), signs (O: objective), reasonings (A: assessment)

and treatments (P: plans) mentioned in the report relative to coded problems (numbered

problems with this supporting clinical information) into a problem-oriented SOAP note from

the clinical free-text.

B.1.2 Research Questions

We designed a study to determine 1)whether the SOAP framework could be annotated with

high agreement by annotators, and 2) determine the types of features that support successful

automated SOAP classification?

B.1.3 Methods

We began our study with a review of the medical literature to define the intention of a

writer composing a clinical text. We selected the Lawrence Weed’s SOAP framework from

the problem-oriented medical record (POMR), a general framework used by care providers

in the medical field to document their medical decision making. In the POMR record, ac-

tive problems are numbered. For each problem, the clinician lists four kinds of information

(S) subjective, (O) objective, (A) assessment and (P) plan. The clinician starts subjective

information, documenting symptoms to understand the patients clinical state (S). Next,

the clinician records objective information, signs, quantifiable data and scientific evidence

experienced by the patient (O). The clinician records assessment information, unifying and

critically evaluating subjective and objective information to formulate a differential diagnoses

(A). Finally, the clinician reports plan information, prescribing treatments for controlling the

underlying disease (P). We had two objectives for this study 1) determine how well the SOAP
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framework applies to emergency department reports, and 2) determine the types of features

that support successful automated SOAP classification.

Can a clinical discourse framework be annotated with high agreement by an-

notators?

We constructed SOAP class definitions through both literature review and a pilot anno-

tation study. For our purposes, we defined subjective as background or historical information

relevant to understanding the patients current or future clinical state and objective as ob-

servable, measurable and quantifiable information. We did not instruct annotators to use the

source of the information, patient or care provider, as a major source for their determination.

We defined assessment as expressions of a diagnosis, impression or differential diagnosis and

plans as any reporting of planned or implemented treatment actions, education or follow-up

procedures. We conducted an initial pilot study on 10 emergency department reports (n=734

sentences) not used in this study. From the pilot study, we clarified our definitions based on

annotator feedback and agreement.

Next, we conducted an annotation study to address our first objective. We randomly

selected 50 emergency department (ED) reports from the University of Pittsburgh Medical

Center (UPMC) aggregated from visits occurring from December 1990 through September

2003. We had trained two annotators, a registered health information administrator and

registered nurse, to individually annotate the sentences from the first 25 reports from the

dataset. The annotators were provided a 13-page instruction guide and annotated each sen-

tence in the report with all SOAP classes that applied. Agreement was evaluated after the

first five reports and again after the 25th report. At that point, we found agreement was

consistently sufficient (kappa coefficient above 0.70 for all classes) for only the second anno-

tator to annotate the remaining 25 reports. Disagreements in the first 25 reports were settled

by randomly selecting one of the annotators answers for all classes. The annotations were

collected with a web-based annotation tool built using the Django infrastructure written in

Python. For each SOAP class, every sentence in the dataset was labeled as a positive or
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negative instance.

We evaluated their agreement with one another using several types of agreement metrics -

Observed Agreement, Positive Specific, Negative Specific, Chance Corrected, and Prevalence

Corrected. Figure 5 shows formulas for computing these agreement metrics. We determined

that our annotators had agreement over 0.70 for all classes; therefore, one annotator annotate

the remaining sentences from 25 reports. We used the class annotations produced as our

reference standard.

Figure 5: Definitions of Agreement Measures

Can the clinical discourse framework be automatically annotated from clini-

cal text?

We investigated the following baselines, supervised algorithms and feature groups for

creating and evaluating automated SOAP classifiers.

Baselines: To determine the complexity of the task, we initially developed simple base-

line classifiers. The first baseline assigned the target class for every sentence in the reference

standard (i.e., the class objective for the objective classifier, etc.). The second baseline as-

signed the majority class to every sentence. The third baseline used a conditional probability

distribution to identify the most likely SOAP class for each section in the report. For each

sentence, this classifier assigned the most likely SOAP class with the highest conditional

probability, e.g., if the “disposition” section type was most likely to be assigned the plan

class, all sentences in the “disposition” section were classified as plan. Sections were tagged
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using SecTag, an automated section tagger [99], and conditional probabilities were calculated

using the Natural Language Tool Kit (NLTK) and the pilot dataset. Specifically, for each

sentence, this classifier assigned the SOAP class with the highest posterior probability, e.g.,

if the “disposition” section type was more likely to be assigned as a plan class in the pilot

set, all sentences in the “disposition” section in the test set were classified as plan. Table 14

contains examples of section header types correlated to SOAP classes.

SOAP class SecTag section header types

Subjective allergies and adverse reactions, back review,

chief complaint, family and social history,

family medical history, history present illness,

hospital course, medications, past medical history,

past personal and social history,

review of systems, risk factors, substance use, tobacco use

Objective abdominal exam, chest exam, counts, derm exam,

extremity exam, general exam,

genitourinary exam, head neck exam, heart rate,

heent course, hematology exam,

laboratory and radiology data, laboratory data, pelvis exam

Assessment admission diagnosis, diagnoses,

discharge condition, discharge diagnosis

Plan discharge medications, disposition plan,

ear nose throat exam, follow up

Table 14: Example sections probabilistically associated with SOAP classes

We created SOAP classifiers using a variety of feature groups and support vector ma-

chines, respectively. We chose a supervised learning approach, a linear-kernel support vector

machine. We included a variety of features, including many designed to collapse similar

features into a smaller set of values to reduce the feature space.
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Lexical: Lexical features comprise tokens found in the report. We used the natural

language toolkit (NLTK) to identify all unigrams and bigrams. In “The patient has a

history of stroke” the full set of lexical features include <s>, The, patient, has, a, history,

of, stroke, .,</s>, <s> The, The patient, patient has, has a, a history, history of, of stroke,

stroke ., .</s>, where <s> and </s> indicate the start and end of the sentence, respectively.

Syntactic: Syntactic features consist of Penn Treebank tags [132] encoded by the Stan-

ford part of speech tagger (09/28/2009) [133] and corrected for common tagging errors that

occur in clinical narratives using seven rules that were learned by applying Brills transfor-

mation based tagger to a previous set of clinical reports [134]. For example, one of the rules

states that if a token with the tag “CD” is followed by the token “.”, change the tag “CD”

to the tag “LS”, indicating that the number is part of a numbered list. We identified the

part of speech and word/part of speech pair (word/POS) for each lexical feature as a

crude attempt at word sense disambiguation. For instance, discharge (NN) often indicates

a clinical finding, whereas “discharge” (VB) indicates being released from the hospital.

For every verb phrase in the sentence, we encoded the tense of the first verb in each verb

phrase as past, present or future. For example, we classified “She had developed a severe

cough” as past, and “she will return if she develops a severe cough” as future and present,

respectively.

Semantic: We used the Unified Medical Language System (UMLS) Metathesaurus (ver-

sion.2.4.C release) courtesy of the National Library of Medicine to tag the semantic type

and cui (concept unique identifier) for each token in the sentence found in the UMLS. For

example, in the phrase “Lungs are clear”, “Lungs” maps to the semantic type Body Part,

Organ, or Organ Component and CUI: C0024109, and “clear” maps to semantic type Idea

or Concept and CUI: C1550016. We also captured the position of each semantic type

in the sentence as Beginning, Middle, or End, based on character counts within the sentence.

We applied a feature reduction strategy [135] to encode whether a digit type was being

86



used as a date, list, anatomical location, medication, result, or age. We used simple regular

expressions and heuristics to assign the digit type. For example, “1. aspirin” - list :, “cranial

nerves II through XII are grossly intact” - anatomic location, “20 mg” - medication, and

“Temp 98.6” - result. The emergency department reports were de-identified according to the

HIPAA criteria by DE-ID software (version 5.10). We used the de-id tags as features rep-

resenting patient sensitive or service facility information: name, date, device-id, or institution.

We identified state of mind terms as shallow predictors of mental postulation sug-

gestive of medical decision making and hedge terms from [136] suggestive of uncertainty

and speculation. For example, in “I think he has viral meningitis,” “think” was encoded as

a state of mind term. Similarly, in “She likely has the flu,” “likely” was encoded as a

hedge term. Finally, we included trigger terms applied by the ConText algorithm, which

indicate that a problem mention in the sentence is historical (e.g., “history of”), conditional

(e.g., “if”), absent (e.g., “denies”), or experienced by someone other than the patient (e.g.,

“family history”).

Contextual: We defined the contextual information about the sentence with respect to

the structure of the clinical narrative. We used the SecTag tagger to identify the section

type for each sentence found in the report. For example, “Cardiovascular: The patient has

chest pain” maps to a section type cardiovascular review. SecTag defines 16,036 possible

section tags.

Because emergency department report structure may follow chronological ordering sim-

ilar to ideal progress notes (i.e., Subjective, Objective, Assessment, Plan), we included a

feature encoding the position of the sentence in the report in quartiles. We also included

length of the sentence in number of tokens. For instance, “Chief Complaint: headache” is

in the 1st quartile of the report and has length of 6 including sentence start and end markers.

Heuristic: We developed an unsupervised method for mining high-precision terms

from a corpus of de-identified emergency department reports (200,000 sentences from 3,577
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reports) from the University of Pittsburgh NLP Repository [130]. We used an initial seed

set of 5-6 terms to predict the SOAP class for each sentence by assuming all sentences that

contained the seed terms belong to that class. From these tagged sentences, we used a sim-

ple conditional probability to learn new terms as good predictors for a SOAP class. For

example, if “alcohol” is a subjective seed and tags the sentence “patient drinks one glass

of alcohol a day”, the conditional probability may learn “drinks” as a correlated term for

subjective. Additionally, we conducted an error analysis on our pilot data to identify phrases

we thought would be indicative of each class. For every sentence in the corpus, we created a

vector of features with binary values to indicate whether or not that feature was present in

the sentence. Features representing words or classes from the text (e.g., unigrams or UMLS

semantic type) were generated from the pilot set so a feature not present in the pilot set was

not applied to this dataset.

All features were automatically generated with programs we implemented in Python ver-

sion 2.5. For each sentence, we encoded the feature value as “1” if the feature was found

in the sentence and “0” otherwise. Each set of similar features was mapped to one of five

feature groups: lexical, syntactic, semantic, contextual or heuristic. For each SOAP class,

we trained and tested two SVMs. The first was trained on all features. The second was

trained on only those features that were included by a Chi-square feature selection with a

significance threshold of p<0.05. We used this subset to train the support vector machine

to classify sentences for each SOAP class using 10-fold cross validation. We compared the

output of all classifiers against the manual reference standard to address four questions: (1)

How well does a classifier perform when trained on all feature groups? (2) How well does

a classifier perform when trained on a subset of features selected through a feature selection

algorithm? (3) How much does each feature group contribute to performance on the clas-

sification task? (4) Which feature group is most informative to the classification task as a

whole? To answer question (1) we trained an inclusive classifier using all feature groups, (2)

we trained a classifier using a subset of features selected with a feature selection algorithm,

(3) we trained classifiers using each feature group individually, and (4) we trained classifiers

by leaving out one feature group at a time (ablation study).
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To evaluate how well each classifier identified each SOAP class, we used standard evalu-

ation metrics: accuracy, recall, and precision. We computed the F1 score, which represents

the harmonic mean between recall and precision and used the F1 score to select the best

performing classifier. We used McNemar’s test to evaluate whether the classifier errors were

statistically significantly different for classifiers trained on all feature groups and classifiers

trained after feature selection. We applied Yates correction (0.50) when one cell in the

contingency table was less than or equal to 5 [137]. The presence (positive instances) and

absence (negative instances) of the SOAP class were used to define true and false positives

and true and false negatives between the reference standard and the automated classifier -

see Table 15.

Reference Standard Automated Classification

True Positive (TP) present present

True Negative (TN) absent absent

False Positive (FP) absent present

False Negative (FN) present absent

Table 15: Definitions for Agreement and Performance Metrics

B.1.4 Results

We measured inter-annotator agreement of expert annotators applying the SOAP model to

ED reports and developed SOAP classifiers using a diverse number of features. We observed

the following results.

Can a clinical discourse framework be annotated with high agreement by an-

notators?
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Our dataset of 50 reports was comprised of 4,130 sentences in which the number of

sentences per document ranged from 32 to 198, with an average of 82.6 sentences per doc-

ument. Prevalence and frequency of SOAP classes in the 4,130 sentences was as follows:

35.5% (subjective; n=1468), 44.0% (objective; n=1818), 5.5% (assessment ; n=227), 11.3%

(plan; n=465), and 8.1% (not applicable; n=335). Inter-annotator agreement for all classes

exceeded the threshold for adequate agreement (0.70) - see Table 16. The most prevalent

classes, subjective and objective, demonstrated greater than 0.90 agreement across all agree-

ment metrics. Agreement was lowest for assessment with a Cohens kappa of 0.76; however,

once corrected for prevalence, the kappa value increased to 0.940.

SOAP Observed Positive Negative Chance Prevalence

Class Agreement Specific Specific Corrected Corrected

Subjective 0.97 0.96 0.98 0.94 0.94

Objective 0.95 0.95 0.96 0.91 0.91

Assessment 0.97 0.78 0.98 0.76 0.94

Plan 0.96 0.83 0.98 0.80 0.92

Table 16: Agreement between two annotators for sentences from 25 reports

Can the clinical discourse framework be automatically annotated from clini-

cal text?

Table 17 shows predictive performance of all SOAP classifiers. Overall, most supervised

classifiers outperformed the baseline classifiers. As expected, the Positive class baseline did

not have adequate precision, resulting in poor F1 scores for the less prevalent classes, assess-

ment (11.0) and plan (22.5). The Majority class baseline did not predict the SOAP class, but

reflected the imbalanced class distribution in the dataset. The Section classifier performed

quite well with high F1 scores for subjective (88.2) and objective (70.2); however, it produced

moderate performance for the less prevalent classes of assessment (54.4) and plan (70.2).

The Section classifier performed with low recall on assessment (50.0) and plan (20.6) classes.
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The SOAP classifier without feature selection (w/o FS) outperformed the Section clas-

sifier baseline by increasing the points of F1 scores for all classes – 6.2 (subjective), 23.2

(objective), 7.7 (assessment) and 42.6 (plan). The improved F1 scores can be explained by

increased coverage for most classes with recall gains of 5.3 points (subjective), 34.8 points

(objective) and 47.0 points (plan). We observed these gains at no expense of precision, but

instead with modest to substantial point increases of 7.4 (subjective), 4.8 (objective), 29.6

(assessment) and 3.8 (plan).

We applied feature selection (w/FS) to reduce the feature space and determine if we

could further improve the F1 scores. Feature selection improved performance for most classes,

showing gains ranging from 1.1 to 13.6 points with the exception of the subjective class, which

dropped by 0.5 points. In evaluating how well each feature group performed individually, we

found that no single feature group individually produced greater F1 scores than the SOAP

classifiers w/FS. Finally, we assessed how informative each feature group was to SOAP class

prediction using an ablation study design. For each class, we observed a reduction of F1

scores by removing the contextual feature group, which was largely due to decreases in

recall without the contextual features. This finding indicates that contextual features are

important to SOAP classification.
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Classifiers S O A P

Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec Acc F1 Prec Rec

Positive 35.5 70.8 35.5 100 44.0 87.6 44.0 100 5.5 11.0 5.5 100 11.3 22.5 11.3 100

Majority 65.5 0 0 0 56.0 0 0 0 94.5 0 0 0 88.7 0 0 0

Section 91.8 88.2 90.2 86.2 78.4 70.2 89.1 58.0 95.4 54.4 60.1 50.0 90.6 33.0 82.0 20.6

w/o FS 96.2 94.4 97.6 91.5 94.2 93.4 93.9 92.8 96.8 62.1 89.7 47.5 95.2 75.6 85.8 67.6

w/FS 95.7 93.9 94.7 93.1 95.2 94.5 94.5 94.5 97.8 75.7 95.9 62.6 95.5 77.0 90.7 66.9

Lex only 93.5 90.6 92.9 88.5 93.5 92.6 92.6 92.6 97.3 69.3 94.7 54.6 94.9 73.0 91.3 60.9

Syn only 91.5 87.7 91.0 84.5 93.0 92.0 92.8 91.2 96.7 60.1 92.7 44.5 94.8 73.4 85.9 64.1

Sem only 88.4 82.0 91.0 74.7 89.5 87.1 95.0 80.4 96.5 58.0 83.5 44.5 93.4 65.0 81.3 54.2

Con only 91.5 87.5 91.4 83.9 86.2 84.7 83.3 86.1 95.4 40.0 71.6 27.8 91.0 46.7 70.7 34.8

Heur only 68.9 31.4 73.0 20.0 55.9 1.4 44.8 0.70 94.5 0 0 0 88.7 0 0 0

Sans Lex 96.0 94.4 95.5 93.3 94.8 94.1 94.3 93.8 97.8 76.6 92.0 65.6 95.7 78.9 88.5 71.2

Sans Syn 95.9 94.1 94.9 93.4 95.4 94.8 94.8 94.8 97.5 72.7 92.5 59.9 95.6 77.5 92.0 66.9

Sans Sem 95.9 94.1 95.2 93.1 95.1 94.4 94.5 94.4 97.7 74.1 95.8 60.4 95.6 77.2 91.7 66.7

Sans Con 94.1 91.5 94.2 89.0 94.0 93.2 93.4 93.1 97.6 72.5 96.4 58.1 95.0 74.0 88.9 63.4

Sans Heur 95.8 94.0 94.8 93.2 95.0 94.4 94.4 94.4 97.8 76.2 95.4 63.4 95.6 77.2 91.7 66.7

Table 17: SOAP Classifiers including baselines (positive and majority class and section),

all feature groups with and without feature selection (FS), each individual feature group

(Lex=lexical, Syn=syntactic, Sem=semantic, Con=contextual, Heur=heuristic) and abla-

tion arms (sans or leave-onegroup-out).

From the feature selection algorithm, we identified the most informative features for

predicting each of the four SOAP classes. Section categories, CUIs, unigrams, bigrams and

word/POS pairs were among the feature values with the highest weights in Table 18.

Subjective Objective Assessment Plan

past medical history rectal exam discharge condition date transcribed
history present illness cardiovascular exam admission diagnosis reviewed VBN
allergies and adverse rxns heent exam discharge diagnosis discharge VB
review of systems abdominal exam C0042029 follow VB
ear review extremity exam C0851827 “reviewed with”
cardiovascular review general exam weakness NNP “admitted”
gastrointestinal review neurological exam assessment NNP “the plan”
neurologic review C0015385 GI RB “this plan”
medications C0205307 assessment NN “<s> follow”
C1301808 C0007012 dehydrated VBN “evaluated by”
C0027497 elevated VBN noninsulin-dependent JJ “a lumbar”
C0030450 CO2 NNP “confusion.” “puncture without”
C0332272 not RB “:confusion” “examination findings”
“: negative” he states “to micu” “a bit”
“: no” “sent.” “micu for” “<s> I”

Table 18: Feature values with the 15 highest weights for each SOAP class.

92



B.1.5 Discussion

The objectives of this study were to (1) assess the applicability of the SOAP model for ED

reports and (2) determine which features contribute to accurate SOAP classification.

Can a clinical discourse framework be annotated with high agreement by an-

notators?

The SOAP model applied to 3,836 (92.9%) sentences in our dataset. All sentences that

were not assigned a SOAP class by annotators either served administrative purposes, such

as “Signed by: **NAME[AAA XXX GGG], MD,” or were incorrectly segmented sentences,

such as a section heading like “PHYSICAL EXAM:” segmented as a sentence. There were

several sentences with more than one class assigned (3.99%). In rare cases, multiple class

assignment was due to incorrect sentence segmentation in which two sentences were seg-

mented as one. Most sentences with multiple SOAP classifications represented descriptions

of clinical reasoning relating, for example, an objective measurement to a plan or a plan to

an assessment. For instance, “She will be discharged in good condition with impression of

viral illness” consists of both plan (patient will be discharged) and assessment (impression

that she has a viral illness).

Annotators showed high agreement on the SOAP annotation task. The coverage of SOAP

classes and high agreement for expert annotation suggests that the SOAP framework is ap-

plicable to ED reports and that the annotation schema for SOAP classes was well defined.

Performing the pilot study was helpful in evolving a schema for human experts. We

also suspect that giving annotators flexibility of assigning all classes that apply to a single

sentence was important for eliciting good agreement. Disagreements between annotators

occurred most often when a statement was an assessment. This was consistent with our

finding during the pilot study and was often a point of disagreement during training. For

example, one annotator consistently labeled some sentences containing a problem mention as
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an assessment even when the context indicated a plan, like “UTI” in “He was given printed

instructions about UTI, Pyridium, and ciprofloxacin.”

Can the clinical discourse framework be automatically annotated from clini-

cal text?

Prevalence of SOAP classifications in our dataset varied from 6% for assessment to 44%

for objective classes. As expected, performance of the SVM classifier was higher for more

prevalent classes, with F1-scores of 0.62 (assessment), 0.76 (plan), 0.94 (subjective), and 0.93

(objective). Precision was higher than recall for all classes (the lowest precision score was 0.86

for plan), suggesting that false positive classifications were less of a problem than false neg-

ative classification and that more training data could further improve performance. Feature

selection tended to improve classification performance, especially for the two less prevalent

classes, which showed 1.4 point (plan) and 13.6 point (assessment) increases. From 32,215

original features, the number of features was reduced by a range of 82.7% (plan) to 94.1%

(assessment), indicating that most features were not needed for accurate classification or

that features we included had overlapping information. For some features, the number of

values was reduced, including unigrams, bigrams, UMLS CUIs, section tags, and part-of-

speech tags. For other features, all values for that feature were eliminated, including UMLS

semantic type and its position in the sentence and the ConText lexicon. Eliminated fea-

tures all belonged to the semantic feature type, but many were probably too broad to be

discriminatory. For example, concepts with the UMLS semantic type “Body Part, Organ,

or Organ Component” can occur in a description of review of systems, which is subjective,

and in a description of a physical exam, which is objective, and therefore may not distinguish

between the two classes. Semantic features that were not eliminated conveyed more specific

information about the concept, such as the UMLS CUI C0015385: limbs, or about the

reasoning process of the physician, such as hedge terms or words indicating state of mind.

Features with the highest positive weights included section headings (discharge diagnosis

for assessment and abdominal exam for objective), and predictive unigrams and bigrams (:

negative for subjective and admitted for plan), and UMLS CUIs (C0205307: normal for
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objective and C0851827: diabetes mellitus for assessment).

We evaluated the contribution of different types of features to classification accuracy.

Assigning a SOAP class based only on the section in which a sentence was found was less

accurate than a classifier using all features, but was quite accurate for subjective (F1 score

0.88) and objective (F1 score 0.70) classes. Recall was especially low with the section classi-

fier for all classes, but subjective (0.86 subjective, 0.58 objective, 0.50 assessment, 0.21 plan).

This finding is consistent with our experience in other classification tasks [64], showing that

section is a critical factor in interpreting the context of a clinical problem, but is not reliable

enough to be the sole factor in classification. Good performance of the section-based SOAP

classifier suggests that our map from sections to SOAP classes was effective and that SecTag

performed well at automatically tagging sections. For example, the ability to distinguish

the section medications from discharge medications was critical to accurate assignment of

subjective and plan classes. Reports from other institutions and other report types may be

less amenable to automated section tagging.

No classifier trained on an individual feature group produced an F1 score better than

the classifier using all feature groups w/FS. However, performances of the syntactic feature

group on objective and plan classification and of lexical features on objective classification

were not statistically different from performance when using all groups. When we removed

individual feature groups in the ablation studies, performance generally did not decrease sig-

nificantly. Comparable performance may be due to overlap in feature values. For instance,

the presence of lexical features such as unigrams and bigrams may provide enough informa-

tion to discriminate the class when other features like state of mind and hedge terms were

held out. Removing contextual features, such as sentence length and quartile position in

a report, significantly decreased F1 scores for classifying subjective and assessment classes

suggests that location within the structure of a document is meaningful. One interesting

and unexpected finding was that removing lexical features produced a higher F1 score for

classifying assessment and plan sentences. It may be that not relying on the words in the

text can result in better performance when there is sparse training data.

95



During the pilot study, we performed a detailed error analysis on less prevalent classes

and identified phrases and terms we thought would improve classification performance. We

included the hand-crafted phrases as the heuristic feature group in this study and found that

they did not provide any useful knowledge for predicting assessment and plan. This result

may be due to the fact that the hand-crafted phrases are not very frequent, or it may be

that the phrases are an indication of overfitting to our pilot data.

We reviewed the most heavily-weighted features for each of the target SOAP classes. For

the subjective class, the most predictive features included sections that describe past and

recent history, subsections of the review of systems, as well as CUIs attributed to “Signs and

Symptoms”, “Qualitative Concept”, and “Geographic Locations.” We would expect this,

since physicians often describe the symptoms of the patient in terms of quality, severity and

onset. In contrast, sections attributed to physical examination and CUIs associated with

“Body Part, Organ, or Organ Component”, “Functional Group”, and “Biologically Active

Substance, Inorganic Chemical” were predictive of objective sentences, which is consistent

with our intuition that physicians describe findings and observations for each of the body

systems and describe results from diagnostic tests and laboratories. Many of the features

most predictive of assessment included diagnosis sections and CUIs describing “Population

Groups” and “Disease or Syndrome.” For the plan class, section tags were not highly pre-

dictive. We suspect this can be explained by the fact that physicians tend not to adhere to

document structure as strictly at the end of a report as they do in the initial portion of the

report, i.e., Plan and Assessment tend to become condensed into the ED Course as reports

of implemented treatments, medical decision making and potential plans for follow-up. We

also found that the word sense of a unigram is important for determining if a statement is

a plan, such as discharge VB versus discharge NN.
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B.1.6 Conclusion

We determined 1) the SOAP framework could be annotated with high agreement and 2) a

SOAP classifier could be trained with moderate to high performance. The diverse features

we used resulted in accurate automated assignment of subjective and objective classes and

of fair assignment of assessment and plan classes. There is a tradeoff between the cost of

acquiring syntactic and semantic features and the modest improvement over lexical features.

SOAP classification of sentences could be a useful feature in other NLP tasks and could help

localize information in reports for use in visualization and assessment of clinical care.

We developed an automated SOAP classifier that could be applied to clinical texts to

help identify and structure the context of described problem mentions including potentially

annotated treatments and tests related to pertinent patient problems.
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