21 research outputs found

    Characterization of Skeletal Muscle Biopsy and Derived Myoblasts in a Patient Carrying Arg14del Mutation in Phospholamban Gene.

    Get PDF
    Phospholamban is involved in the regulation of the activity and storage of calcium in cardiac muscle. Several mutations have been identified in the PLN gene causing cardiac disease associated with arrhythmogenic and dilated cardiomyopathy. The patho-mechanism underlying PLN mutations is not fully understood and a specific therapy is not yet available. PLN mutated patients have been deeply investigated in cardiac muscle, but very little is known about the effect of PLN mutations in skeletal muscle. In this study, we investigated both histological and functional features in skeletal muscle tissue and muscle-derived myoblasts from an Italian patient carrying the Arg14del mutation in PLN. The patient has a cardiac phenotype, but he also reported lower limb fatigability, cramps and fasciculations. The evaluation of a skeletal muscle biopsy showed histological, immunohistochemical and ultrastructural alterations. In particular, we detected an increase in the number of centronucleated fibers and a reduction in the fiber cross sectional area, an alteration in p62, LC3 and VCP proteins and the formation of perinuclear aggresomes. Furthermore, the patient's myoblasts showed a greater propensity to form aggresomes, even more marked after proteasome inhibition compared with control cells. Further genetic and functional studies are necessary to understand whether a definition of PLN myopathy, or cardiomyopathy plus, can be introduced for selected cases with clinical evidence of skeletal muscle involvement. Including skeletal muscle examination in the diagnostic process of PLN-mutated patients can help clarify this issue.This work was partially supported by the Italian Ministry of Health (Ministero della Salute, Ricerca Corrente 245)S

    Case report: Clinical and molecular characterization of two siblings affected by Brody myopathy

    Get PDF
    Exercise-induced muscle stiffness is the hallmark of Brody disease, an autosomal recessive myopathy due to biallelic pathogenic variants in ATP2A1, encoding the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase SERCA1. About 40 patients have been reported so far. Our knowledge about the natural history of this disorder, genotype–phenotype correlations and the effect of symptomatic treatment is partial. This results in incomplete recognition and underdiagnosis of the disease. Here, we report the clinical, instrumental, and molecular features of two siblings presenting childhood-onset exercise-induced muscle stiffness without pain. Both the probands display difficulty in climbing stairs and running, frequent falls, delayed muscle relaxation after exertion. Cold temperatures worsen these symptoms. No myotonic discharges were observed at electromyography. Whole Exome Sequencing analysis in the probands revealed the presence of two ATP2A1 variants: the previously reported frameshift microdeletion c.2464delC and the likely pathogenic novel splice-site variant c.324 + 1G > A, whose detrimental effect was demonstrated in ATP2A1 transcript analysis. The bi-allelic inheritance was verified by Sanger sequencing in the unaffected parents. This study expands the molecular defects associated with Brody myopathy

    Physical activity practiced at a young age is associated with a less severe subsequent clinical presentation in facioscapulohumeral muscular dystrophy

    Get PDF
    Background: In facioscapulohumeral muscular dystrophy (FSHD), it is not known whether physical activity (PA) practiced at young age is associated with the clinical presentation of disease. To assess this issue, we performed a retrospective cohort study concerning the previous practice of sports and, among them, those with medium-high cardiovascular commitment in clinically categorized carriers of a D4Z4 reduced allele (DRA). Methods: People aged between 18 and 60 were recruited as being DRA carriers. Subcategory (classical phenotype, A; incomplete phenotype, B; asymptomatic carriers, C; complex phenotype, D) and FSHD score, which measures muscle functional impairment, were assessed for all participants. Information on PAs was retrieved by using an online survey dealing with the practice of sports at a young age. Results: 368 participants were included in the study, average age 36.6 years (SD = 9.4), 47.6% male. The FSHD subcategory A was observed in 157 (42.7%) participants with average (± SD) FSHD score of 5.8 ± 3.0; the incomplete phenotype (category B) in 46 (12.5%) participants (average score 2.2 ± 1.7) and the D phenotype in 61 (16.6%, average score 6.5 ± 3.8). Asymptomatic carriers were 104 (subcategory C, 28.3%, score 0.0 ± 0.2). Time from symptoms onset was higher for patients with A (15.8 ± 11.1 years) and D phenotype (13.3 ± 11.9) than for patients with B phenotype (7.3 ± 9.0). The practice of sports was associated with lower FSHD score (-17%) in participants with A phenotype (MR = 0.83, 95% CI = 0.73-0.95, p = 0.007) and by 33% in participants with D phenotype (MR = 0.67, 95% CI = 0.51-0.89, p = 0.006). Conversely, no improvement was observed in participants with incomplete phenotype with mild severity (B). Conclusions: PAs at a young age are associated with a lower clinical score in the adult A and D FSHD subcategories. These results corroborate the need to consider PAs at the young age as a fundamental indicator for the correct clinical stratification of the disease and its possible evolution

    Case report: A novel patient presenting TRIM32-related limb-girdle muscular dystrophy

    Get PDF
    Limb-girdle muscular dystrophy autosomal recessive 8 (LGMDR8) is a rare clinical manifestation caused by the presence of biallelic variants in the TRIM32 gene. We present the clinical, molecular, histopathological, and muscle magnetic resonance findings of a novel 63-years-old LGMDR8 patient of Italian origins, who went undiagnosed for 24 years. Clinical exome sequencing identified two TRIM32 missense variants, c.1181G > A p.(Arg394His) and c.1781G > A p.(Ser594Asp), located in the NHL1 and NHL4 structural domains, respectively, of the TRIM32 protein. We conducted a literature review of the clinical and instrumental data associated to the so far known 26 TRIM32 variants, carried biallelically by 53 LGMDR8 patients reported to date in 20 papers. Our proband's variants were previously identified only in three independent LGMDR8 patients in homozygosis, therefore our case is the first in literature to be described as compound heterozygous for such variants. Our report also provides additional data in support of their pathogenicity, since p.(Arg394His) is currently classified as a variant of uncertain significance, while p.(Ser594Asp) as likely pathogenic. Taken together, these findings might be useful to improve both the genetic counseling and the diagnostic accuracy of this rare neuromuscular condition

    Case report: A novel ACTA1 variant in a patient with nemaline rods and increased glycogen deposition

    Get PDF
    BackgroundCongenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario.Case presentationHere, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin.ConclusionOur case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations

    Traumatic Brain Injury Triggers Neurodegeneration in a Mildly Symptomatic MELAS Patient: Implications on the Detrimental Role of Damaged Mitochondria in Determining Head Trauma Sequalae in the General Population

    No full text
    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a maternally inherited genetic mitochondrial disease with a typical onset in the first two decades of life and a major involvement of central nervous system (CNS). We present the case of a man affected with an oligosymptomatic, genetically determined MELAS syndrome, whose clinical picture dramatically and irreversibly worsened following a mild head injury. We hypothesize that the CNS metabolic stress induced by the brain injury activated an irreversible cascade of events leading to progressive neurodegeneration because damaged mitochondria were unable to restore the balance between energy requirements and availability

    Statins Neuromuscular Adverse Effects

    No full text
    Statins are drugs widely prescribed in high-risk patients for cerebrovascular or cardiovascular diseases and are, usually, safe and well tolerated. However, these drugs sometimes may cause neuromuscular side effects that represent about two-third of all adverse events. Muscle-related adverse events include cramps, myalgia, weakness, immune-mediated necrotizing myopathy and, more rarely, rhabdomyolysis. Moreover, they may lead to peripheral neuropathy and induce or unmask a preexisting neuromuscular junction dysfunction. A clinical follow up of patients assuming statins could reveal early side effects that may cause neuromuscular damage and suggest how to better modulate their use. In fact, statin dechallenge or cessation, or the alternative use of other lipid-lowering agents, can avoid adverse events. This review summarizes the current knowledge on statin-associated neuromuscular adverse effects, diagnosis, and management. It is conceivable that the incidence of neuromuscular complications will increase because, nowadays, use of statins is even more diffused than in the past. On this purpose, it is expected that pharmacogenomic and environmental studies will help to timely predict neuromuscular complications due to statin exposure, leading to a more personalized therapeutic approach

    Multiparametric quantitative MRI assessment of thigh muscles in limb-girdle muscular dystrophy 2A and 2B

    No full text
    Introduction: The aim of this study was to apply quantitative MRI (qMRI) to assess structural modifications in thigh muscles of subjects with limb girdle muscular dystrophy (LGMD) 2A and 2B with long disease duration. Methods: Eleven LGMD2A, 9 LGMD2B patients and 11 healthy controls underwent a multi-parametric 3T MRI examination of the thigh. The protocol included structural T1-weighted images, DIXON sequences for fat fraction calculation, T2 values quantification and diffusion MRI. Region of interest analysis was performed on 4 different compartments (anterior compartment, posterior compartment, gracilis, sartorius). Results: Patients showed high levels of fat infiltration as measured by DIXON sequences. Sartorius and anterior compartment were more infiltrated in LGMD2B than LGMD2A patients. T2 values were mildly reduced in both disorders. Correlations between clinical scores and qMRI were found. Conclusions: qMRI measures may help to quantify muscular degeneration, but careful interpretation is needed when fat infiltration is massive. Muscle Nerve 58: 550–558, 2018

    Multiparametric quantitative MRI assessment of thigh muscles in limb-girdle muscular dystrophy 2A and 2B

    No full text
    Introduction: The aim of this study was to apply quantitative MRI (qMRI) to assess structural modifications in thigh muscles of subjects with limb girdle muscular dystrophy (LGMD) 2A and 2B with long disease duration. Methods: Eleven LGMD2A, 9 LGMD2B patients and 11 healthy controls underwent a multi-parametric 3T MRI examination of the thigh. The protocol included structural T1-weighted images, DIXON sequences for fat fraction calculation, T2 values quantification and diffusion MRI. Region of interest analysis was performed on 4 different compartments (anterior compartment, posterior compartment, gracilis, sartorius). Results: Patients showed high levels of fat infiltration as measured by DIXON sequences. Sartorius and anterior compartment were more infiltrated in LGMD2B than LGMD2A patients. T2 values were mildly reduced in both disorders. Correlations between clinical scores and qMRI were found. Conclusions: qMRI measures may help to quantify muscular degeneration, but careful interpretation is needed when fat infiltration is massive
    corecore