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Background: Congenital myopathies are a group of heterogeneous inherited 
disorders, mainly characterized by early-onset hypotonia and muscle weakness. 
The spectrum of clinical phenotype can be  highly variable, going from very 
mild to severe presentations. The course also varies broadly resulting in a 
fatal outcome in the most severe cases but can either be  benign or lead to 
an amelioration even in severe presentations. Muscle biopsy analysis is crucial 
for the identification of pathognomonic morphological features, such as core 
areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 
fibers disproportion. However, multiple abnormalities in the same muscle can 
be observed, making more complex the myopathological scenario.

Case presentation: Here, we describe an Italian newborn presenting with severe 
hypotonia, respiratory insufficiency, inability to suck and swallow, requiring 
mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light 
microscopy showed the presence of vacuoles filled with glycogen, suggesting 
a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies 
confirmed the presence of normally structured glycogen, and the presence of 
minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An 
expanded Next Generation Sequencing analysis targeting congenital myopathies 
genes revealed the presence of a novel heterozygous c.965  T  >  A p. (Leu322Gln) 
variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin.

Conclusion: Our case expands the repertoire of molecular and pathological 
features observed in actinopathies. We  highlight the value of ultrastructural 
examination to investigate the abnormalities detected at the histological level. 
We also emphasized the use of expanded gene panels in the molecular analysis 
of neuromuscular patients, especially for those ones presenting multiple bioptic 
alterations.
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1 Introduction

Congenital myopathies are a group of rare congenital genetic 
muscle disorders, that primarily affect the structure and the function 
of skeletal muscles, leading to hypotonia and muscle weakness (1–3). 
Mutations in various genes with a crucial role in muscle development, 
maintenance, and contraction, have been associated with different 
phenotypic and histological expressions of these disorders. Because of 
their wide genetic and clinical heterogeneity, next-generation 
sequencing (NGS) has been increasingly used for their diagnosis in 
recent years (3–6).

While the current classification of congenital myopathies remains 
subject to an ongoing evaluation, because of the constant discovery of 
additional genes, the diagnostic algorithm still relies on muscle biopsy 
findings (3, 7, 8). In fact, in reference Centers for neuromuscular 
disorders, despite the growing tendency toward a gene-first approach 
in the diagnostic assessment of such complex clinical scenarios, 
muscle biopsy data remain crucial in orienting and/or confirming the 
definitive diagnoses. Among congenital myopathies, Nemaline 
Myopathy (NM) features the presence of nemaline bodies (NBs), that 
are rod-shaped structures within muscle fibers (9–11). These rods 
consist in protein inclusions containing Z-line proteins, and they are 
likely to contribute to disrupt muscle function, leading to sarcomeric 
dysfunction and muscle weakness (1, 12–15).

Although nemaline bodies can be considered pathognomonic 
features of NMs (8, 12, 16, 17), their presence does not rule out the 
possibility of alternative diagnoses, including acquired conditions 
(18). Therefore, the identification of rod-shaped structures should 
prompt the molecular analysis of genes associated with NM, together 
with those underlying other genetic forms (18).

Congenital NM has been associated with causative variants in 14 
genes encoding for sarcomeric components, and for auxiliary proteins 
involved in the regulation of sarcomeric functions, stability, or 
turnover (3, 19). Deleterious variants in ADSSL1, CFL2, KLHL40, 
KLHL41, LMOD3, MYO18B, MYPN, NEB and TNNT3 are recessively 
inherited, while molecular defects in KBTBD13 display a dominant 
inheritance. Finally, ACTA1, TPM2, TPM3 and TNNT1 genes are 
associated with recessive or dominant NM forms. Most of NM 
patients present mutations in NEB (50% of cases) or ACTA1 (20–30% 
of patients), with ACTA1 variants representing the most common 
defect in patients with congenital onset or severe presentations 
(20–22).

ACTA1 gene encodes for the skeletal muscle 42 kDa alpha-actin 
protein, whose main function is to interact with myosin during muscle 
contraction. Mutations in the ACTA1 gene can disrupt the normal 
structure and function of the alpha-actin-1 protein, resulting in 
muscle weakness, hypotonia (low muscle tone), and various muscular 
conditions collectively referred to as “actinopathies” (23–25). Muscle 
biopsies of NM patients might display a rich repertoire of pathological 
alterations, including cores, nemaline and intranuclear bodies, actin 
accumulations, fiber-type disproportion, dystrophic features, and 
zebra bodies.

Here, we report the case of a neonatal patient, who presented 
clinical features of congenital myopathy and glycogen accumulations 
on histological and ultrastructural analyses of the muscle. The 
identification of nemaline bodies at electron microscopy oriented the 
investigation toward the discovery of a de novo, novel heterozygous 
variant in the ACTA1 gene.

2 Case presentation

The patient is the second-born child to non-consanguineous 
healthy parents of Italian origins (Supplementary Figure 1). He was 
born at full term through a vaginal delivery, following a pregnancy 
characterized by reduced fetal movements. At birth, the baby 
displayed significant hypotonia and lacked spontaneous movements 
and breathing activity. APGAR score was 4, 6 and 8 at 1st, 5th, and 
10th minute, respectively. The newborn was immediately intubated 
and provided with invasive mechanical ventilation. Due to his severe 
general conditions, the patient was promptly transferred to the 
Neonatal Intensive Care Unit of our hospital for further 
examinations and treatments. During his hospital stay, the baby 
required continuous mechanical ventilation. He  also showed 
difficulties in facial expressions, sucking, swallowing, and general 
voluntary movements. Furthermore, a bilateral cryptorchidism was 
observed. When he  was 54 days old, a tracheostomy and 
percutaneous gastrostomy were performed, following which the 
baby displayed a steady growth curve, with an appropriate 
weight gain.

Routine biochemical profiles on multiple occasions, 
comprehensive of Creatine phosphokinase (CPK) dosage, returned 
physiological results. Ophthalmological and cardiological evaluation, 
with the latter including electrocardiography (ECG) and 
echocardiography, revealed no abnormalities. Auditory brainstem 
response (ABR) testing showed bilateral high auditory thresholds, 
higher on the right side, without brainstem dysfunction; a follow-up 
Brainstem Auditory Evoked Response (BAER) testing was therefore 
recommended at 3 months of life, and this turned out to be normal.

Electromyography (EMG) showed a widespread muscle damage, 
suggesting a myogenic suffering, mainly involving the proximal 
regions of both upper al lowerlimbs.

Electroencephalogram (EEG) displayed a global alteration of the 
cerebral organization, with slow wave abnormalities, and absence of 
sleep phase transition.

Muscle biopsy was performed on right quadriceps, at 9 days of 
age. Histological analyses showed a great variability in fiber size, 
with a slight prevalence of type 1 fibers, and a 15% of hypotrophic 
fibers estimated to belong to both types of fibers. Several fibers 
showed the presence of cytoplasmic and subsarcolemmal optically 
empty vacuoles, sometimes of conspicuous size, and 
intracytoplasmic fuchsinophilic granulations (Figure  1). In 
particular, by analyzing semithin sections, we  estimated the 
presence of rods in 14.6% of the fibers. Nuclear centralization, 
degenerative fibers with augmented connective tissue, fiber 
splittings and increased acid phosphatase staining were not 
observed. Analysis on semithin sections showed that the vacuoles 
were PAS positive, indicating an increased glycogen content 
(Figure 2), and suggesting a glycogen storage disease; in fact, the 
histopathological features resembled branching or debranching 
enzyme deficiency (Autosomal Recessive Glycogen Storage Disease 
type 4 or 3, respectively). These findings prompted the molecular 
analysis of the genes implied in muscle glycogen storage disorders, 
such as GBE1 and AGL, without conclusive results. The subsequent 
ultrastructural analyses by electron microscopy confirmed the 
presence of extensive glycogen collections, leading to significant 
alterations in muscle architecture (Figure 3A). In addition, several 
cytoplasmic rods of variable size were found in some muscle fibers 
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(Figures  3B–D). Fibers with area of compartmentalization for 
nemaline rods (Figure 3E) and glycogen granules (Figure 3F) were 
also observed.

To better understand such complex histological findings, 
additional genetic investigations were conducted. NGS sequencing 
analysis of a panel of genes involved in congenital myopathies 
revealed the presence of a novel heterozygous c.965 T > A p. 
(Leu322Gln) variant in the ACTA1 gene (NM_001100.3) (Figure 4A). 
The absence of the variant in Patient’s parents supported the 
hypothesis of its  
de novo origin (Figure 4B). The variant was not found in available 
population databases (GnomAD MAF:0), and it is currently classified 
as likely pathogenic, according to the ACMG guidelines (criteria 
PP3-strong, PM1 and PM2). All the interrogated in silico prediction 
tools unanimously assigned a pathogenic behavior to this novel 

variant, which would affect an evolutionary conserved residue 
(Figure 4C) located in the large domain of actin, subdomain 3 (amino 
acids 270–337) (Figure 4D).

Eventually, the baby was discharged at 3 months and 6 days of age, 
with home mechanical ventilation and enteral nutrition through a 
gastrostomy pump. The patient is nowadays 6 years old, and he  is 
currently nourished through a PEG tube, and yet presenting an 
important drooling, for which he is treated with anticholinergic drugs. 
He still requires continuous assisted ventilation, and his cardiological 
follow-up continues to show no abnormalities. He utilizes a tilting 
postural system for sitting, with anti-gravity support for the upper 
limbs. He  also uses positioning braces for the lower limbs and a 
half-day corset, especially for seated activities. On the cognitive side, 
he demonstrates good abilities in attention and sensory orientation, 
and adequate interactive and communicative skills.

FIGURE 1

Histological findings in muscle biopsy. H&E stain in our patient (A) showed a great variability in fiber size. Several fibers showed the presence of 
cytoplasmic and subsarcolemmal optically empty vacuoles, sometimes of conspicuous size (arrows). (B) H&E stain in age-matched healthy control. 
(C) MGT stain in our patient showed the presence of intracytoplasmic fuchsinophilic granulations (asterisks). (D) MGT stain in age-matched healthy 
control. (E) ATPase pH 9.4 in our patient and (F) in age-matched control. Scale bar 10  μm.
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FIGURE 2

Histological findings in muscle biopsy. Toluidine blue stained semithin section in our patient (A) showed cytoplasmic and subsarcolemmal pale staining 
storage material (arrows). (B) Toluidine blue stained semithin section in age-matched healthy control. (C) PAS stain in our patient showed increased 
subsarcolemmal glycogen content (asterisks). (D) PAS stain in age-matched healthy control. Scale bar 10  μm.

FIGURE 3

Ultrastructural analyses of the muscle sample by electron microscopy. (A) Glycogen granules accumulated among the myofibrils and initial thickening 
of Z line (arrows). (B,C) Large glycogen collections localized at the subsarcolemmal level and at intracytoplasmic sites, several nemaline rods of variable 
size and shape (arrows), myofibrillar disorganization. (D) High magnification of a nemaline rod and glycogen granules. (E,F) Fibers with areas of 
compartmentalization. (E) In the left area the muscle fiber contains several nemaline rods. (F) In the upper area the muscle fiber is completely replaced 
by glycogen. Scale bars (A–C): 0.8  μm, (D): 0.5  μm. (E,F): 3.3  μm. (A,B,F) Asterisks indicate large glycogen collections.
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FIGURE 4

Genetic studies in our patient. (A) Pedigree of the family. Black symbol indicates the affected patient. (B) Sequence electropherograms showing the 
presence of the heterozygous c.965  T  >  A ACTA1 variant in the patient but not in his parents suggesting de novo occurrence of the variant. 

(Continued)
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3 Discussion and conclusion

We describe a novel proband presenting with a severe congenital 
myopathy, due to a novel ACTA1 molecular defect.

Pathogenic variants in ACTA1 are most commonly de novo 
dominant missense mutations (90% of defects), and lead to severe NM 
pathology by dominant-negative effect (26) (Figures 4E–G). Rarely, 
ACTA1 variants can be  recessively inherited in NM patients with 
intrauterine onset. These variants belong to a heterogenous type of 
mutations that include missense substitutions, and variants predicted 
to alter the reading frame, or to result in truncated forms of the 
protein. Biallelic ACTA1 variants might allow (24) or not (27) the 
expression of skeletal muscle actin, whereas the expression of the 
homologous cardiac actin (encoded by ACTC1) is generally preserved. 
Even if cardiac involvement is not typical of NM, dilated or 
hypertrophic cardiomyopathy may also be present, particularly in 
association with specific mutations of ACTA1 (3, 28, 29).

Additional clinical presentations may be associated with ACTA1 
variants, and these are usually reflected by specific alterations observed 
at the muscle biopsy, such as: core-like areas, fiber-type disproportion, 
intranuclear rods, actin-containing filamentous inclusions, and zebra 
bodies. Some of these abnormalities are suspected to be mutation-
specific, supporting the definition of a spectrum of congenital 
myopathies related to actin dysfunction (23).

To date, more than 250 ACTA1 pathogenic variants have been 
reported as pathogenic, spanning all the coding exons of the gene, 
hence affecting the entire 3D structure of the encoded actin protein 
(20, 24, 30). Several variants associated with congenital myopathy are 
known to be  located in close proximity to the proposed actin–
tropomyosin contact sites (31). The novel amino acid change 
described in this report would also impinge in the same region. 
Amino-acidic changes have been demonstrated to increase the 
aggregation of actin, potentially leading to nemaline rods (26). 
Nevertheless, a prediction of the pathogenic effect for ACTA1 variants 
is complicated by the dynamic nature of the protein (limiting the 
efficacy of structural modeling), and by the presence of several actin 
binding proteins, that can influence several aspects of actin’s function 
and turnover, through allosteric interactions. The partial knowledge 
of these aspects hampers genotype–phenotype correlations and the 
design of innovative therapies.

Clinically, the ACTA1-related NM often exhibits severe congenital 
forms leading to respiratory failure with death within the first year of 
life, though mild or childhood onset forms have also been reported 
(20, 32).

In early-onset NM linked to ACTA1 variants, affected newborns 
present with floppy appearance due to neonatal hypotonia and severe 
congenital muscle weakness impairing the achievement of 
developmental milestones (2, 20). The weakness also affects the 

respiratory muscles, leading to breathing difficulties within the first 
hours of life. In many cases, patients require tracheostomy for 
mechanical ventilation. In addition to this, weakness can impair 
swallowing and feeding, contributing to poor weight gain. 
Consequently, some affected patients necessitate tube feeding 
and gastrostomy.

Joint contractures, facial weakness with high-arched palate, fine 
and gross motor delays, skeletal deformities, such as clubfeet, pectus 
excavatum or scoliosis, and muscle atrophy are not so uncommon (3, 
18, 20, 32). Antenatal presentation, with reduced fetal movements and 
quantitative alteration of the amniotic fluid, have also been 
reported (20).

Inter- and intrafamilial clinical variability has been described in 
individuals with NM due to ACTA1 pathogenic variants (30). Despite 
the abovementioned phenotypic variability, a correlation seems to 
emerge between the position of the mutation and its clinical and 
histological presentations (31–33). Interestingly, in a recent cohort 
study (20), patients harboring biallelic null ACTA1 variants showed 
an increased life expectancy; this outcome was explained by the higher 
expression levels of cardiac alpha-actin in muscle samples. Cardiac 
alpha-actin is the main alpha-actin form in skeletal muscle during 
embryonic development, and it is then replaced by skeletal muscle 
alpha-actin around birth (20). The total absence of skeletal muscle 
alpha-actin in the skeletal muscles of these NM patients (due to the 
presence of biallelic null ACTA1 variants), probably led to an increased 
expression of cardiac alpha-actin after birth, which might have 
contributed to a less severe disease course.

Our patient presented a typical congenital form of NM due to 
ACTA1 mutations, with severe and generalized skeletal muscle 
weakness, hypotonia and lack of spontaneous movements. Disease 
onset was antenatal, since reduced fetal movements were reported 
during pregnancy. At birth, the patient immediately required assisted 
ventilation and nutrition. He also presented bilateral cryptorchidism, 
which is often reported in other forms of congenital myopathies (3). 
Repeated cardiological assessments excluded structural and functional 
anomalies. Nowadays our patient, who is 6-year-old, is still ventilated 
and fed with gastrostomy but no cardiological impairment has been 
so far observed. He  displays adequate interactive and 
communicative skills.

A preliminary histological assessment disclosed a significant 
accumulation of PAS-positive material, while intracytoplasmic 
fuchsinophilic granulations were observed only in less than 10% of the 
fibers. This observation initially led to the suspicion of a glycogen 
storage disorder (GSD) and, consequently, to perform specific analyses 
on GBE1 and AGL, ruling out the presence of pathogenic variants in 
both genes. These negative results prompted us to focus more 
accurately on the fuchsinophilic granulations, that were therefore 
studied also at the ultrastructural level. This further analysis confirmed 

(C) Evolutionary conservation of the affected residue across species. (D) Diagram showing the structure of ACTA1 gene and protein. Dominant and 
recessive variants are indicated above and under the diagram, respectively. “!” symbol indicates a variant in which de novo occurrence was suspected 
or demonstrated; red color indicates variant associated with intranuclear rod myopathy (IRM); italic style is used for variant associated with fiber type 
disproportion, the underlined style is used for variants associated with muscle description of homogeneous filamentous inclusions containing actin; 
the “^” symbol was used to indicate variants found in patients with muscle fibers presenting core regions with no contractile material or mitochondria. 
Dashed lines indicate the presence of a large genomic deletion. (E–G) Distribution of ACTA1 variants based on their exonic location (E), inheritance 
pattern (F) and mutational types (G).

FIGURE 4 (Continued)
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increased glycogen content, but also revealed the presence of nemaline 
rods within fibers, often scattered in the glycogen. In addition, 
we observed a disorganized sarcomeric architecture with myofibrillar 
disarray, a finding which is more frequently seen in patients with more 
severe clinical presentations. Indeed, the degree of severity of 
sarcomeric disorganization is acknowledged as a more reliable 
prognostic marker compared to the percentage of positive fibers for 
nemaline bodies (34). In fact, the complete or partial absence of the 
typical nemaline rods is not uncommon, especially in newborns, since 
the detection of these rod-shaped structures depends on the time of 
sampling as well as on the muscle analyzed. Moreover, in neonatal 
cases, the physiological small dimension of muscle fibers, further 
reduced by atrophy or hypotrophy, can complicate the observation 
(20, 35).

Therefore, the employment of ultrastructural analyses is a helpful 
approach for the detection of these pathological structures.

Interestingly, accumulations of glycogen were also observed in the 
muscle biopsies from other patients carrying ACTA1 mutations (10, 
36, 37). However, there are conflicting opinions on whether glycogen 
storage might be  a consistent feature of the ACTA1-related 
NM. Notably, glycogen accumulation was observed in the muscles of 
11 NM patients with pathogenic variants in ACTA1, but ultrastructural 
confirmation was obtained in only three of them (35). In contrast, a 
recent in-depth examination of muscle biopsies from other 10 subjects 
with congenital or pediatric clinical onset did not disclose this finding 
(20). Moreover, a correlation between glycogen accumulation and the 
site or type of molecular defects is also missing. Glycogen 
accumulation is not typically observed in other forms of congenital 
myopathy, including those linked to the most frequent NEB mutations 
(34). Furthermore, ACTA1 mouse models, that nicely recapitulate 
several aspects of human myopathology, also fail to show increased 
glycogen content (38, 39).

A defect in energy utilization has been hypothesized as possible 
mechanism underlying such glycogen accumulations in ACTA1-
mutated muscles (40). In support of this hypothesis, a downregulation 
of the genes involved in glucose and glycogen metabolism was 
observed in muscle biopsies collected from 12 NM patients, and, 
interestingly, one of them was ACTA1 mutated (40).

The impaired breakdown of glycogen could be the consequence 
of altered activity of glycogen phosphorylase, the main contributor of 
cytosolic glycogen lysis. This enzyme was found to interact with 
structural muscle proteins, including alpha actinin and F-actin (41). 
Alpha-actinin deficiency has been associated with increased glycogen 
content in a mouse model (42). Finally, we  cannot exclude that 
pathological changes acting in the muscle of patients harboring 
ACTA1 pathogenic variants could influence phosphorylase regulation 
by post-translational or epigenetic mechanisms (43).

To date, there is no availability of any specific pharmacological 
treatments for NM, and this is mainly due to the complexity of the 
clinical and histological presentations of the disease, which makes the 
definition of a phenotype–genotype correlation and the development 
of targeted therapies utterly challenging.

The possibility to predict the clinical course of NM based on 
genotype could enhance the clinical management and thereby the 
outcomes of the affected patients. Appropriate medical management, 
including physical respiratory and nutritional support, where needed, 
can play a pivotal role in improving the quality of life for individuals 
with this condition (33, 44, 45). Muscle mass augmenting exercise 

seem to be beneficial for patients with certain ACTA1 mutations (10, 
46). Several studies of ACTA1-NM mouse models demonstrated the 
ameliorating effects on the clinical course of specific factors inducing 
fiber hypertrophy (i.e., myostatin inhibitors), as well as of dietary 
tyrosine supplementation, hence suggesting potential targets for 
ACTA1 disease therapies (47, 48). In a ACTA1-NM mouse model 
harboring the His40Tyr variant, Lindqvist and colleagues (49) 
performed intramuscular injections of recombinant adeno-associated 
viral vectors with a myosin transgene able to facilitate muscle 
contraction. When present, the transgene leads to restoration of the 
intrinsic force-generating capacity and avoids fiber atrophy.

In addition, other studies evaluated the therapeutic effects of the 
use of small molecules modulating calcium release from troponin 
C. These substrates are able to sensitize the contractile apparatus to 
Ca2+, subsequently activating troponin, with the result of improving 
muscle contraction in neuromuscular disorders, including ACTA1-
related disease (23, 46, 50). Finally, Sztal and colleagues revealed a less 
severe manifestation of the ACTA1-NM due to an increase in 
transcriptional activity of an actin paralogue in a zebrafish disease 
model (51).

Our report highlights the clinical utility of electron microscopy to 
drive and support molecular testing. Nowadays, the diagnosis of 
inherited neuromuscular disorders usually relies on NGS protocols 
that are performed soon after clinical and instrumental examinations, 
bypassing the need for invasive muscle biopsy procedures. However, 
molecular testing and muscle biopsy are not mutually exclusive. For 
example, in neonatal and infantile-onset congenital hypotonia, muscle 
biopsy can often lead to a precise diagnosis alone or facilitate the 
orientation of the genetic testing. In the pediatric population of 
neuromuscular patients, the diagnostic yield was higher when genetic 
testing was matched with muscle biopsy findings (52). Congenital 
myopathies in particular show the highest degree of agreement 
between muscle biopsies findings and genetic results (53).
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