53 research outputs found

    Supported Gold Nanoparticles for Alcohols Oxidation in Continuous-Flow Heterogeneous Systems

    Get PDF
    Gold nanoparticles (AuNPs) were anchored on alkynyl carbamate-functionalized support materials having the suitable features for application as catalysts in continuous-flow packed bed reactors. The functionalization step was carried out by grafting with the di-functional organosilane [3-(2-propynylcarbamate)propyl]triethoxysilane (PPTEOS) three commercial micrometer-sized oxide supports, i.e. silica, alumina, and titania. The alkynyl-carbamate moieties were capable to straightforwardly reduce the gold precursor HAuCl4 yielding the supported AuNPs systems Au/SiO2@Yne, Au/Al2O3@Yne, and Au/TiO2@Yne. A comparison among the three materials revealed that silica allowed the highest organic functionalization (12 wt%) as well as the highest gold loading (3.7 wt%). Moreover, TEM investigation showed only for Au/SiO2@Yne the presence of homogeneously distributed, spherically shaped AuNPs (av. diameter 15 nm). Au/SiO2@Yne is an efficient catalyst, both in batch and flow conditions, in the oxidation of a large variety of alcohols, using H2O2 as oxidizing agent, at a temperature of 90 \ub0C. Furthermore, under flow conditions, the catalyst worked for over 50 h without any significant decrease in the catalytic activity. The catalytic activity of the three catalysts was evaluated and compared in the oxidation of 1-phenylethanol as a model substrate. We found that the flow approach plays a strategic role in preserving the physical and chemical integrity of the solid catalysts during its use, with remarkable consequences for the reaction conversion (from 2% in batch to 80 % in flow) in the case of Au/TiO2@Yne

    Propargyl carbamate-functionalized Cu(II)-metal organic framework after reaction with chloroauric acid: An x-ray photoelectron spectroscopy data record

    Get PDF
    A copper-containing metal organic framework was prepared using the new organic linker 5-(2-{[(prop-2-yn-1-yloxy)carbonyl]-amino} ethoxy)isophthalic acid [1,3-H2YBDC (where Y = alkYne and BDC = Benzene DiCarboxylate)] and functionalized with gold particles by reaction with HAuCl4 under thermal treatment in methanol. The resulting system was investigated by complementary techniques to obtain information on its structure and morphology. In the present work, x-ray photoelectron spectroscopy (XPS) was employed to analyze the chemical composition of a representative specimen. Besides wide scan spectra, data obtained by the analysis of the C 1s, O 1s, N 1s, Cu 2p, and Au 4f signals are presented and critically discussed. The results highlight the reduction of Au(III) to mostly Au(I) species. Overall, the data presented herein may act as useful guidelines for the eventual tailoring of material properties and their possible implementation toward functional applications in heterogeneous catalysis

    Gold nanoparticles supported on functionalized silica as catalysts for alkyne hydroamination: A chemico-physical insight

    Get PDF
    Highly stable gold nanoparticles anchored on propynylcarbamate-functionalized silica (Au/SiO2@Yne) have been efficiently utilized for the heterogeneous hydroamination of phenylacetylene with aniline under different reaction conditions. In order to ascertain the eventual influence of surface silanol groups on the system activity and selectivity tailored modifications of Au/SiO2@Yne catalysts were pursued according to two different strategies, involving respectively functionalization with trimethylethoxysilane (Au/SiO2@Yne-TMS) or post-treatment with triethylamine (Au/SiO2@Yne-NEt3). The prepared materials were analysed by several complementary techniques such as Solid State NMR (SS NMR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD). A comparison of the resulting catalytic activities with that of the pristine Au/SiO2@Yne revealed a significant improvement for Au/SiO2@Yne-NEt3 in terms of both conversion and selectivity. Recycling and stability studies showed a catalytic activity decrease after the first run, due to the formation of polyphenylacetylene (PPhA) oligomers shielding the active sites. PPhA removal by sonication in acetone fully restored the catalytic activity and empowered the system with a good operational stability, a very crucial issue in view of eventual practical applications

    Supported gold nanoparticles catalysts for organic transformations

    Get PDF
    The research work described in this thesis concerns the synthesis, characterisation and study of the catalytic activity of supported gold nanoparticles (AuNPs) immobilised on various oxide supports, i.e. silica (SiO2), alumina (Al2O3), titania (TiO2) and magnetite (Fe3O4), previously functionalised with [3-(2-propynylcarbamate)propyl]triethoxysilane (PPTEOS). The alkynyl-carbamate moieties anchored on the support were capable of straightforwardly reducing the gold precursor chloroauric acid (HAuCl4) to afford Au/OS@Yne (OS = Oxide Support, Yne = organic functionalisation), without the need of additional reducing or stabilising agents. The resulting materials were characterised by means of several complementary techniques, such as thermogravimetric analysis (TGA), atomic absorption spectroscopy (AAS), transmission electron microscopy (TEM), solid state NMR spectroscopy (SS NMR) and x-rays photoelectron spectroscopy (XPS), in order to investigate their structural and chemical properties. Furthermore, the catalytic activity of the obtained Au/OS@Yne was evaluated first in the oxidation of alcohols and then in the hydroamination of alkynes. Finally, during a six months stay at the Karl-Franzens University of Graz, a second research work was carried out, concerning the study of metal organic frameworks biocomposites

    Nanoparticelle d'oro supportate su silice funzionalizzata: Sintesi, caratterizzazione e catalisi.

    Get PDF
    Sono stati sintetizzati catalizzatori eterogenei di oro supportati su silice funzionalizzata. Le specifiche funzionalità condensate sulla superficie del supporto sono in grado di ridurre HAuCl4, producendo nanoparticelle d’oro metalliche sferiche e stabilizzate sulla superficie, senza l’aggiunta di agenti riducenti e stabilizzanti. I catalizzatori sono attivi per la reazione di riduzione del 4-nitrofenolo (4-NP) a 4-amminofenolo (4-AP)

    Silica-Supported Gold Nanoparticles: Synthesis, Characterization and Reactivity

    Get PDF
    The main aim of this work was the synthesis and applications of functionalized-silica-supported gold nanoparticles. The silica-anchored functionalities employed, e.g. amine, alkynyl carbamate and sulfide moieties, possess a notable affinity with gold, so that they could be able to capture the gold precursor, to spontaneously reduce it (possibly at room temperature), and to stabilize the resulting gold nanoparticles. These new materials, potentially suitable for heterogeneous catalysis applications, could represent a breakthrough among the “green” synthesis of supported gold nanoparticles, since they would circumvent the addition of extra reducing agent and stabilizers, also allowing concomitant absorption of the active catalyst particles on the support immediately after spontaneous formation of gold nanoparticles. In chapter 4 of this thesis is also presented the work developed during a seven-months Marco Polo fellowship stay at the University of Lille (France), regarding nanoparticles nucleation and growth inside a microfluidic system and the study of the corresponding mechanism by in situ XANES spectroscopy. Finally, studies regarding the reparation and reactivity of gold decorated nanodiamonds are also described. Various methods of characterization have been used, such as ultraviolet-visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), X-ray Fluorescence (XRF), Field Emission Gun Scanning Electron Microscopy (SEM-FEG), X-ray Photoionization (XPS), X ray Absorption Spectroscopy (XAS)

    I. Microwave-Influenced Diversity-Oriented Synthesis Of Biologically Relevant Small & Natural-Product-Like Molecules Via Multicomponent Coupling Reactions Ii. Synthetic Studies Toward The Total Synthesis Of The Repeating Tetrasaccharide Unit Of Zwitterionic Polysaccharide Ps A1

    Get PDF
    Microwave-influenced diversity-oriented synthesis of biologically relevant small and natural-product-like molecules via multicomponent coupling reactions (MCCRs) have been investigated. Cheap, readily available starting materials in conjunction of microwave irradiation and employment of environmentally benign solvent (e.g. water) provided a common platform that allowed to access a wide array of structurally and skeletally diverse molecules. The investigation allowed us to establish a new paradigm of diversity-activity relationships (DARs) by tuning reacting components of the MCCRs and proved that in contrary to the conventional use of microwave as a rate accelerating tool, it can be used to influence reactivity of molecules. The method was also extended to develop new protecting groups (PGs, PDMAB, PMNPAB) that can be useful in carbohydrate as well as other areas of synthetic organic chemistry. Additionally, the new p-N,N-diemethylaminobenzyl (PDMAB) PG was employed to develop an alkoxide-based neutral glycosylation and further extended to study entirely neutral glycosylation via oxocarbenium ion. We also investigated the total synthesis of the repeating tetrasaccharide unit of zwitterionic polysaccharide PS A1 using different strategies. PS A1 is known to modulate T-cell response via MHC-II pathway and shown to prevent tumor growth. The synthesis is quite challenging and we have been able to construct the trisaccharide unit of the repeating tetrasaccharide unit of PS A1

    Integral Chow ring and cohomological invariants of stacks of hyperelliptic curves

    Get PDF

    Synthesis, characterization and potential applications of novel metal-organic frameworks

    Get PDF
    ​The research work described in this thesis concerns the synthesis, characterization, and applications of two kinds of metal-organic frameworks (MOFs), Copper based MOF (Cu-MOF) and zirconium based MOF (Zr-MOF) functionalized with new linkers. ​The common thread of this research project can be summarized in three work phases: ​first, the synthesis and characterization of new organic linkers is described, followed by the presentation of the different optimization conditions for the MOFs synthesis. ​Second, the new materials were fully characterized using several complementary techniques, such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. ​Final, to obtain a complete work the possible environmental applications of the new materials were explored
    • …
    corecore